Department of Health, Education, and Welfare for a Graduate Professional Opportunities Program Fellowship (to S.S.H.) which helped make this work possible.

Registry No. trans,trans-2,2,8,8-tetramethylnona-3,6-dien-5-one, 73838-78-5; trans,trans-trideca-5,8-dien-7-one, 73838-79-6; trans,-trans-1,5-diphenylpenta-1,4-dien-3-one, 35225-79-7; trans,trans-2,2,4,6,8,8-hexamethylnona-3,6-dien-5-one, 73838-80-9; trans,trans-1,5-bis(1-cyclohexenyl)penta-1,4-dien-3-one, 73838-81-0; trans,-trans-2,8-dimethylnona-1,3,6,8-tetraen-5-one, 73838-82-1; 1,4-penta-dien-3-one, 1890-28-4; trans,trans-1,5-dichloropenta-1,4-dien-3-one, 73838-83-2; benzophenone, 119-61-9; 2,2'-dinaphthyl ketone, 613-

56-9; 2, 2^{\prime}-dithienyl ketone, 704-38-1; 3, 3^{\prime}-dinitrobenzophenone, 21222-05-9; trans-3,3-dimethyl-1-butenylmercuric chloride, 36525-02-7; trans-1-hexenylmercuric chloride, 50874-36-7; trans-2-phenylethenylmercuric chloride, 36525-03-8; trans-1,3,3-trimethyl-1-butenylmercuric chloride, 38010-69-4; trans-2-(1-cyclohexenyl)ethenylmercuric chloride, 56453-89-5; trans-3-methyl-1,3-butadienylmercuric chloride, 56453-81-7; ethenylmercuric chloride, 762-55-0; trans-2-chloroethenylmercuric chloride, 1190-78-9; phenylmercuric chloride, 100-56-1; 2-naphthylmercuric chloride, 39966-41-1; 2-thienylmercuric chloride, 5857-39-6; 3-nitrophenylmercuric chloride, 2865-17-0; CO, 630-08-0; bis(3,3-dimethyl-1-butynyl)mercury, 73838-84-3; 2,2,7,7-tetramethyl-3,5-octadiyne, 6130-98-9.

Acyclic Stereoselection. 9. Stereochemistry of the Addition of Lithium Enolates to α-Alkoxy Aldehydes ${ }^{1}$

Clayton H. Heathcock,* Steven D. Young, James P. Hagen, Michael C. Pirrung, Charles T. White, and Don VanDerveer
Departments of Chemistry, University of California, Berkeley, California 94720, and Georgia Institute of Technology, Atalnta, Georgia 30332

Received February 20, 1980

Abstract

'The stereochemistry of addition of lithium enolates derived from esters and ketones to the α-alkoxy aldehydes 1-5 has been investigated. In all cases, the predominant product is that predicted by application of Felkin's model for asymmetric induction and by assuming the alkoxy group to be the "large" group. The Cram cyclic model for asymmetric induction is not followed. Stereostructures have been assigned by a combination of conversion to products of known stereostructure, ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR correlations, and single-crystal X-ray analysis.

Any program aimed at the total synthesis of macrolide antibiotics or polyether ionophores using stereoselective aldol condensations ${ }^{1}$ must confront the problem of diastereoface selectivity in additions to chiral α-alkoxy aldehydes (relative asymmetric induction). ${ }^{2}$ To examine this question, we have studied the additions of several lithium enolates to the α-alkoxy aldehydes $1-5$. The carbonyl compounds which have been utilized are ketones 6-9 and esters 10-13 (Chart I).

The preparation of α-alkoxy aldehydes was accomplished as follows. Aldehydes 1-3 were prepared in racemic form by ozonolysis of ethers $14-16$. The R enan-

tiomer of 4 was prepared from D-mannitol by the method of Baer and Fischer. ${ }^{3}$ Aldehyde 5^{4} was prepared in racemic form by the route outlined in Scheme I. Condensation of the known ${ }^{5}$ dioxolanone 17 with propionaldehyde affords adduct 18 as a 70:30 mixture of diastereomers. After hydrolytic removal of the isopropylidine group, the major erythro ${ }^{6}$ dihydroxy acid may be obtained by crys-

[^0]Chart I

6, $R=H$
7, $\mathrm{R}=\mathrm{CH}_{3}$

$8, \mathrm{R}=\mathrm{H}$
$9, \mathrm{R}=\mathrm{CH}_{3}$

10, $R=\mathrm{H}$
11, $\mathrm{R}=\mathrm{CH}_{3}$

12, $\mathrm{R}=\mathrm{H}$
$13, \mathrm{R}=\mathrm{CH}_{3}$

Chart II ${ }^{a}$

21

22

23

24
${ }^{a}$ a, $\mathrm{R}=t-\mathrm{BuMe}_{2} \mathrm{Si} ; \mathrm{b}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} ; \mathrm{c}, \mathrm{R}=$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OCH}_{2}$.
tallization. The overall yield of crystalline 19^{7} is 30% from dioxolanone 17. Although this synthesis of Bergel'son's

Scheme I^{a}

17

18

5
${ }^{a} \mathrm{a}, \mathrm{LDA}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO},-78^{\circ} \mathrm{C} ; \mathrm{b}, 4 \mathrm{M} \mathrm{KOH}, \mathrm{MeOH}$; c, fractional crystallization; d, $\mathrm{MeOH}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, $\mathrm{H}_{2} \mathrm{SO}_{4}$, reflux 6 h ; e, acetone, $\mathrm{H}_{2} \mathrm{SO}_{4}, 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; f, LAH, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} ; \mathrm{g}, \mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Table I. Reaction of Aldehydes 1-3 with Ketone 9 and Ester 10

			product distribution, \%			
aldehyde	enolate precursor	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	
1	9			66	34	
2	9			66	34	
3	9			78	22	
1	10	50	50			
2	10	50	50			
3	10	50	50			

Table II. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts (ppm) of γ-Lactones

compd	C-2	C-3	C-4	C-5	C-2 methyl
25	43.8	80.1	80.3	17.9	12.4
26	43.8	75.1	78.3	13.7	12.9
43	43.2	73.1	84.6	60.0	12.5
44	39.1	70.1	86.9	60.9	8.3

acid is not stereospecific, it is a convenient method for preparing large amounts of this important intermediate and the derived dioxolane 20 , which have now been used in three macrolide total syntheses. ${ }^{8}$ In fact, the overall yields ($30 \% 19,24 \% 20$) are comparable to those obtainable by the other published procedures. ${ }^{7,8 b}$

Results

Aldol condensations were carried out as previously described, ${ }^{9}$ except that longer reaction times are required with certain combinations of reactants (see Experimental Section). Product mixtures were analyzed by ${ }^{13} \mathrm{C}$ NMR spectra of the crude products and in some cases by analytical high-pressure LC. Lactaldehyde ethers 1-3 were studied with methyl acetate (10) and the α-trimethylsiloxy ketone 9. ${ }^{9}$ In each case a mixture of two diastereomeric products was obtained, 21 and 22 (Chart II) from ester 10 and 23 and 24 from ketone 9 . Results are summarized in Table I. All three aldehydes show no diastereoselection with methyl acetate, equimolar mixtures of 21 and 22 being obtained in each case. Some selectivity is observed with the more sterically demanding enolate derived from ketone

[^1]

Chart III ${ }^{\text {a }}$

29

30

32

33

Table III. Reaction of Aldehyde 4 with Ketones 6-9 and Esters 10-13

enolate precursor	28	29	30	31	32	33
		>95	<1			
6	66	34		15	0	0
8	85	15	85	15	0	0
9	66	34	60	0	40	0
10			17	5	47	31

9. The $23 / 24$ ratio is $2: 1$ for aldehydes 1 and 2 and about 3.5:1 for aldehyde 3. Stereostructures were assigned to 23b and 24 b and to 23 c and 24 c by oxidizing the mixtures with methanolic periodic acid ${ }^{9}$ and subjecting the resulting acids to lithium/ammonia reduction to effect hydrogenolysis of the benzyl group. Acidification of the reduction products in each case afforded a separable mixture of lactones 25 and 26. The major lactone was shown to have stereo-

structure 25 by comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum with that of the known ${ }^{10}$ lactone 27. The most diagnostic feature in the spectrum of 25 is the resonance for the C-3 carbinol proton, which appears as a double doublet with $J=7.0$ and 8.0 Hz . For lactone 27 , the relevant coupling constants are $J=7.0$ and $8.5 \mathrm{~Hz} .{ }^{10}$ The ${ }^{13} \mathrm{C}$ NMR spectra of lactones 25 and 26 are also useful in confirming the assigned stereostructures; data are summarized in Table II. The relevant diagnostic resonance is that due to C-5. In the minor lactone 26 this carbon is shielded by 4.2 ppm by the cis-hydroxyl group at C-3. A similar shift is observed in the C-2 methyl resonances of lactones 43 and 44 (vide infra) and is precedented by the observation that the methyl resonance of cis-2-methylcyclopentanol is shifted 4.6 ppm upfield from the analogous resonance in trans-2-methylcyclopentanol. ${ }^{11}$

[^2]
${ }^{a}$ a, $\mathrm{LiAlH}_{4} ; \mathrm{b}, \mathrm{NaIO}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, \mathrm{pH} 6.0 ; \mathrm{c}, 3: 2$ $\mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}$.

Reactions of aldehyde 4 with all eight carbonyl compounds 6-13 were examined. The methyl ketones 6 and 8 and the acetates 10 and 12 give aldols 28 and 29 (Chart III). The ethyl carbonyl compounds 7, 9, 11, and 13 can each give rise to four diastereomeric adducts, $30-33$. The product ratios which were observed in the eight reactions are summarized in Table III.

Stereostructures for adducts 28d and 29d (the trimethylsilyl group is lost in workup) were determined by conversion of the mixture into a $2: 1$ mixture of 2 -deoxy-D-ribose (35) and 2-deoxy-D-lyxose (36) as is shown in Scheme II. A comparison mixture of 35 and 36 was prepared by addition of allylmagnesium bromide to 4 , followed by deprotection and ozonolysis of the resulting mixture of diastereomeric triols. The synthetic 2-deoxy-D-ribose was identified by comparison of its ${ }^{13} \mathrm{C}$ NMR spectrum with that published. ${ }^{12}$ The overall yield for the three-step conversion outlined in Scheme II is 35%. Obviously, there is a danger that one of the diastereomers of the mixture of 28 d and 29 d may have reacted preferentially. However, since the ratio of 35 to 36 obtained was the same as the ratio of 28 d to 29 d we started with, we think that the structure proof is valid.

The mixture of adducts resulting from addition of esters 10 and 12 was reduced to a mixture of diols 37 and 38 ,

37

38
which was compared by ${ }^{13} \mathrm{C}$ NMR with the $2: 1$ mixture of these diols produced by reduction of β-hydroxy aldehydes 34 (see Scheme II). Pinacolone (6) is the most selective reagent with aldehyde 4 ; only a single crystalline aldol is produced. Although we have not rigorously proven its stereostructure, we tentatively assign it structure 28c by analogy with the results obtained with the other reagents.

Stereostructural assignments for adducts 30-33 were more difficult. Fortunately, one reagent (ester 13) gives all four possible products. This mixture of four β-hydroxy esters was separated by chromatography into threo (32b, 33b) and erythro (30b, 31b) fractions. Each fraction was then reduced to a mixture of diols, which show characteristic ${ }^{13} \mathrm{C}$ NMR chemical shifts for the $\mathrm{C}-4$ methyl group (shown under appropriate structures). The 60:40 mixture

[^3]of β-hydroxy esters (30a and 32a) resulting from condensation of aldehyde 4 with methyl propionate was likewise reduced to give a $60: 40$ mixture of the 10.2 and $13.5-\mathrm{ppm}$ diols (39 and 41). The stereostructures of aldols 30 a and

32a were rigorously established by conversion into the known ${ }^{12}$ lactones 43 and 44. Because the observed $2 \mathrm{H}, 3 \mathrm{H}$ coupling constants in 43 and 44 (8.9 and 5.9 Hz , respec-

tively) are at variance with those reported for these lactones (2.6 and 7.1 Hz , respectively), ${ }^{13}$ it is necessary to cite the other evidence in favor of the assigned stereostructures. First, the C-2 methyl resonances in the ${ }^{13} \mathrm{C}$ NMR spectra of aldols 30 a and 32a occur at 10.1 and 14.0 ppm , respectively. We have previously shown ${ }^{14}$ that this resonance in erythro aldols generally falls in the range $8-13 \mathrm{ppm}$, while in threo aldols it is generally in the range $13-18 \mathrm{ppm}$. Second, the ${ }^{13} \mathrm{C}$ NMR chemical shifts of the C-2 methyls of lactones 43 and 44 (Table II) clearly show that the methyl is cis to the C-3 hydroxyl in 44 and trans to it in 43, thus confirming that 30 a is $\mathrm{C}-2, \mathrm{C}-3$ erythro and 32 a is $\mathrm{C}-2, \mathrm{C}-3$ threo. Third, the $2 \mathrm{H}, 3 \mathrm{H}$ coupling constants in the acetates of 43 and 44 agree in magnitude with the reported $2 \mathrm{H}, 3 \mathrm{H}$ coupling constants for the p-toluates of these lactones. ${ }^{13}$

With the stereostructures of 30a and 32a (and hence of diols 39 and 41) rigorously established, it remains to confidently assign stereostructures to the 10.4 - and $14.2-\mathrm{ppm}$ diols. Three arguments are advanced in favor of the assigned structures. First, the ${ }^{13} \mathrm{C}$ NMR chemical shifts of the C-2 methyl groups in the four aldols resulting from ester 13 are as follows: 30b, $9.1 \mathrm{ppm} ; \mathbf{3 1 b}, 9.1 \mathrm{ppm} ; \mathbf{3 2 b}$, $14.6 \mathrm{ppm} ; 33 \mathrm{~b}, 12.5 \mathrm{ppm}$. We have previously shown that this resonance is of diagnostic value for assigning erythro or threo stereostructure to aldols, ${ }^{14}$ with erythro aldols resonating at higher field than threo aldols. Although the normal ranges are 8-13 ppm for erythro and $13-18 \mathrm{ppm}$ for threo aldols, ${ }^{14}$ we have observed that 2,6 -di-tert-butylaryl esters resonate about 1 ppm to higher field than methyl esters. By this criterion, the 47 and 31% products from ester 13 are C-2, C-3 threo, and the 17 and 5% products are C-2, C-3 erythro. Since the 47 and 17% products are related to diols 41 and 39 , the structures of which are rigorously defined (vide supra), then the 31% product must be the other threo isomer (33b) and the 5% isomer the other erythro isomer (31b). Second, esters such

[^4]as 13 are known to be highly threo selective in their reactions with other aldehydes; ${ }^{1}$ hence, the two major aldols should be $\mathbf{3 2 b}$ and 33 b . Ketone 9 reacts with aldehyde 4 to give two major adducts in a $4.3: 1$ ratio along with 4% of a threo diastereomer. The mixture was converted into a mixture of β-hydroxy aldehydes (in the same manner as illustrated in Scheme II), which was reduced to give a $4: 1$ mixture of the 10.2 - and $10.4-\mathrm{ppm}$ diols. Since this reagent is known to be highly erythro selective, ${ }^{9}$ these diols should be 39 and 40 . Since the stereostructure of 39 is rigorously established by its relationship to aldol 30a and hence to lactone 43 (vide supra), the 10.4 -ppm diol must be 40 .

The aldols obtained in a 6:1 ratio resulting from reaction of ethyl tert-butyl ketone with aldehyde 4 are assigned the erythro stereostructures 30c and 31c. These assignments were confirmed by the unambiguous synthesis of 30 c . Addition of tert-butyllithium to the $60: 40$ mixture of erythro and threo β-hydroxy esters 30a and 32a afforded aldols 30 c and 32 c in low yield. It should be noted that the minor isomer 31c is an exception to our generalization that the α-methyl carbons of erythro aldols show ${ }^{13} \mathrm{C}$ NMR resonances in the range $8-13 \mathrm{ppm} .{ }^{14}$ The analogous erythro isomer 3le (13.7 ppm) is also an exception to this rule. It is possible that these two aldols exist in conformations which produce abnormal deshielding effects for some unknown reason. Aldehyde 5 reacts with ketone 9 to give two erythro adducts, $\mathbf{4 5}$ and $\mathbf{4 6}$, in a ratio of $3: 1$.

Reaction of aldehyde 5 with the racemic keto ether 47 was also examined. ${ }^{15}$ A single crystalline diastereomer is produced, which was shown to have stereostructure 48 by

single-crystal X-ray analysis (Figure 1). Aldol 48 was shown to have the same relative stereochemistry at the relevant centers as the crystalline adduct 45 , the major product from the reaction of aldehyde 5 with ketone 9 . Reduction of 45 with lithium aluminum hydride gives a mixture of diols which is cleaved by sodium periodate in aqueous methanol to obtain β-hydroxy aldehyde 49. The

49
same aldehyde was prepared from aldol 48. Reduction of 48 with lithium aluminum hydride, followed by desilylation with KF in methanol, affords a 5:1 mixture of triols 50 and 51. Oxidation of the major diastereomer 50 affords aldehyde 49.

[^5]

If aldol 48 is desilylated prior to reduction, the $50 / 51$ ratio is $1: 9$. It is interesting that, while 50 undergoes rather smooth periodate oxidation to 49 , diastereomer 51 reacts slowly and gives 49 in poor yield. This is not unreasonable in view of the steric hindrance which must be associated with the cyclic periodate ester ${ }^{16}$ derived from 51 in which two bulky groups are cis about the five-membered ring (52).

52

Discussion

In all cases studied, the major and minor products from the reaction of lithium enolates with α-alkoxy aldehydes are those predicted from attack as illustrated in structures 53 and 54. Thus, the Cram "cyclic model" of asymmetric

53

54
induction ${ }^{17}$ is not followed, as this would predict that the major product would be the other diastereomer in all cases. The transition state which is implied in structure 53 amounts to application of Felkin's model for asymmetric induction, ${ }^{18}$ if one assumes that the alkoxy substituent is the "large" substituent on the asymmetric α-carbon. Felkin's model has recently received theoretical support from the work of Anh and Eisenstein, ${ }^{19}$ who find a strong preference for transition states in which the entering nucleophile is antiperiplanar with one of the substituent bonds to the asymmetric carbon. Anh and Eisenstein argue that the "larger" substituent is the one which has the lowest energy $\sigma^{*} \mathrm{C}_{2} \mathrm{X}$ orbital. By this criterion, OR will always be "larger" than alkyl or aryl groups.

There are a number of other observations which deserve comment. First, the enhancement in stereoselectivity in going from aldehydes 1 or 2 to 3 in the reaction with ketone 9 is interesting. Still has recently noted excellent stereoselectivity in reactions of Grignard reagents with α-alkoxy ketones and reasonably rationalized his results in terms of the Cram cyclic model for asymmetric induction. ${ }^{20}$ In Still's work, it was noted that α-benzyloxy gives higher chelation-controlled stereoselectivity than does α-[(benzyloxy)methoxy] (200/1 for the former, 100/1 for the latter). Still also noticed decreased stereoselectivity for α-tetrahydropyranyloxy. These results are in qualitative

[^6]agreement with our observations: the α-benzyloxy group gives more of the product which would result from a chelation-controlled addition. We think that a reasonable rationale for the results is that addition occurs by competing transition states, one in which the α-alkoxy group chelates a cation and a Felkin transition state in which alkoxy is the "large group". The (benzyloxy)methoxy group shows a slightly greater preference for the Felkin transition state because the inductive effect of the second oxygen renders the α-oxygen less basic. An obvious corollary of this hypothesis is that even more electron-withdrawing groups should favor the nonchelated transition state even more. Experiments to test this idea are underway.

One further trend emerges from the data collected in Tables I and III; enolates derived from ethyl carbonyl compounds usually show higher diastereoface selectivity than enolates derived from the analogous methyl carbonyl compounds. Thus, methyl propionate is generally more selective than methyl acetate, and ketone 9 is more selective than ketone 8. There are exceptions to this generalization. While pinacolone gives only a single adduct with aldehyde 4, ethyl tert-butyl ketone gives the two erythro adducts 30 c and 31 c in a ratio of $6: 1$. The other exceptions are the hindered aryl esters 12 and 13 , both of which give approximately $2: 1$ ratios of products derived from attack modes 53 and 54.

Experimental Section

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. Ether, 1,2-dimethoxyethane (glyme), and tetrahydrofuran (THF) were distilled from LiAlH_{4} or sodium/ benzophenone immediately prior to use. All reactions involving organometallic reagents were conducted under a nitrogen atmosphere. Boiling points and melting points (Pyrex capillary) are uncorrected. IR spectra were determined with a Perkin-Elmer Model 297 infrared recording spectrophotometer. ${ }^{1} \mathrm{H}$ NMR were determined on the following spectrometers: Varian T-60, Varian EM-390, or UCB 180 (a superconducting, $180-\mathrm{MHz}$, FT instrument). ${ }^{13} \mathrm{C}$ NMR spectra were measured at 25.14 MHz with a Nicolet TT-23 spectrometer or at 45.28 MHz on the UCB $180 .{ }^{1} \mathrm{H}$ NMR chemical shifts are expressed in parts per million downfield from internal tetramethylsilane. For complex multiplets, m, the chemical shift given is the center of the multiplet. Significant ${ }^{1} \mathrm{H}$ NMR data are tabulated in the following order: number of protons, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant(s) in hertz. Mass spectra were obtained with Atlas MS-112 and Consolidated $12-110 \mathrm{~B}$ mass spectrometers. Mass spectral data are tabulated as m / e values (intensity expressed as percent of total ion current). Gas-liquid partition chromatography (GLC) was done with Varian Aerograph A-90P, 920, and 940 gas chromatographs. High-pressure liquid chromatography (LC) was done with a Waters Model ALC/GPC-244 liquid chromatograph (analytical) or a Waters PrepLC/System 500 (preparative). Porasil columns were used unless otherwise noted. Elemental analyses were performed by the Microanalytical Laboratory, operated by the College of Chemistry, University of California, Berkeley.

O-[(Benzyloxy)methyl]lactaldehyde (3). Ether 16 (1.705 $\mathrm{g}, 7.75 \mathrm{mmol}$) was dissolved in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $-70^{\circ} \mathrm{C}$, and methanol ($0.65 \mathrm{~mL}, 16.1 \mathrm{mmol}$) was added. Ozone was passed through the solution at a rate of about $1 \mathrm{mmol} / \mathrm{min}$ until the blue color persisted. The excess ozone was removed by bubbling nitrogen through the solution, the solution was warmed, and dimethyl sulfide ($0.65 \mathrm{~mL}, 8.9 \mathrm{mmol}$) was added. After the solution had been allowed to stand at room temperature for 2 h , the solvents were evaporated, the residue was passed through a short plug of silica, and the eluant was purified by preparative high-pressure LC (30% ether/hexane) to give 437 mg (29%) of the aldehyde 3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.33(3 \mathrm{H}, \mathrm{d}, J=7), 4.03(1$ $\mathrm{H}, \mathrm{dq}, J=1,7$), $4.60(2 \mathrm{H}, \mathrm{s}), 4.80(2 \mathrm{H}, \mathrm{s}), 7.23(5 \mathrm{H}, \mathrm{s}), 9.67(1$ $\mathrm{H}, \mathrm{d}, J=1$); IR (film) $2900,1735,1380,1100,1040 \mathrm{~cm}^{-1}$. Sat-
isfactory combustion analysis could not be obtained for this compound, and it gave no suitable molecular or fragment ions for exact mass spectrometric measurement.
(tert-Butyldimethylsilyl)lactaldehyde (1). By use of the procedure described above on a $19-\mathrm{mmol}$ scale, the aldehyde was obtained in 47% yield after preparative high-pressure LC (10% ether/hexane, $R_{f} 0.33$): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.10(6 \mathrm{H}, \mathrm{s}), 0.95$ (9 $\mathrm{H}, \mathrm{s}), 1.27(3 \mathrm{H}, \mathrm{d}, J=7), 4.00(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J=7), 9.66(1 \mathrm{H}, \mathrm{br}$ s); IR (film) 2860, 2800, 1740, 1470, 1460, 1350, 1260, 1140, 1110, $1010,840,780 \mathrm{~cm}^{-1}$; high-resolution mass spectrum on $\mathrm{M}-15$ ion, calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Si} m / e$ 173.10078, found $m / e 173.10090$.

2-(Benzyloxy)propionaldehyde (2). By use of the procedure described above on a $13.2-\mathrm{mmol}$ scale, a 35% yield of the known ${ }^{10}$ aldehyde was obtained after preparative high-pressure LC (10% ether/hexane, $R_{f} 0.19$).

3-[(Trimethylsilyl)oxy]-3-methylbutan-2-one (8). To bis[(trimethylsilyl)acetamide] ($5.27 \mathrm{~g}, 25 \mathrm{mmol}$) was added 3 -hydroxy-3-methylbutan-2-one ($5.11 \mathrm{~g}, 50 \mathrm{mmol}$) under dry nitrogen. The mixture was heated to $100^{\circ} \mathrm{C}$ with stirring for 12 h. The cooled mixture was taken up in hexanes and shaken with several portions of water. The layers were separated, the organic phase was dried over MgSO_{4} and filtered, and the solvent was carefully removed in vacuo at $5-10^{\circ} \mathrm{C}$. The crude material was distilled ($32^{\circ} \mathrm{C}, 4 \mathrm{mmHg}$) to give the product: $4.70 \mathrm{~g}(54 \%)$; IR (film) $2950,1720,1380,1355,1255,1200,1180,1135,1040,895$, $845,760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.12(9 \mathrm{H}, \mathrm{s}), 1.30(6 \mathrm{H}, \mathrm{s}), 2.18$ ($3 \mathrm{H}, \mathrm{s}$).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Si}$: C, $55.12 ; \mathrm{H}, 10.41$. Found: C, 54.86 ; H, 10.19.

2-Methyl-4-[(tert-butyldimethylsilyl)oxy]-2-pentene (14). In 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dissolved tert-butyldimethylsilyl chloride ($3.66 \mathrm{~g}, 24.2 \mathrm{mmol}$) and imidazole ($1.90 \mathrm{~g}, 27.9 \mathrm{mmol}$). To this solution was added 2 -methyl-4-hydroxy-2-pentene ($2.0 \mathrm{~g}, 20 \mathrm{mmol}$) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After being allowed to stand at room temperature overnight, the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$, the layers were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with $5 \% \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, and NaCl , dried, filtered, and evaporated to give $4.28 \mathrm{~g}(100 \%)$ of the silyl ether: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 0.00(6 \mathrm{H}$, s), $0.85(9 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{d}, J=7), 1.60(3 \mathrm{H}, \mathrm{s}), 1.67(3 \mathrm{H}, \mathrm{s})$, $4.40(1 \mathrm{H}, \mathrm{m}), 5.10(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8)$; IR (film) 2850, 1460, 1380, 1250, 1070, 1000, 900, $830,770 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{OSi}$ C, $67.22 ; \mathrm{H}, 12.13$. Found: C, 67.02 ; H, 12.26 .
2-Methyl-4-(benzyloxy)-2-pentene (15). In a $300-\mathrm{mL}$, three-necked, round-bottomed flask was placed $\mathrm{NaH}(7.40 \mathrm{~g}$ of a 50% oil dispersion, 154 mmol). This was washed twice with petroleum ether and covered with 80 mL of THF and 80 mL of DMF. The alcohol ($13.35 \mathrm{~g}, 133 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, and the solution was stirred at that temperature for 1 h . Benzyl bromide ($17.0 \mathrm{~mL}, 143 \mathrm{mmol}$) was added, and the solution was stirred overnight. This solution was poured into a mixture of 200 mL of petroleum ether and $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, and the layers were separated. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}, 1 \% \mathrm{HCl}$, NaHCO_{3}, and NaCl , dried, filtered, evaporated, and distilled to give $18.2 \mathrm{~g}(72 \%)$ of material boiling at $78{ }^{\circ} \mathrm{C}$ (1 torr): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20(3 \mathrm{H}, \mathrm{d}, J=7), 1.63(3 \mathrm{H}, \mathrm{s}), 1.73(3 \mathrm{H}, \mathrm{s}), 4.20$ $(1 \mathrm{H}, \mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{d}, J=10), 4.57(1 \mathrm{H}, \mathrm{d}, J=10), 5.10(1 \mathrm{H}$, br d, $J=8$), 7.26 (5 H , s); IR (film) 3030 , 2970, 1670, 1450 , 1370, $1200,1150,1070,1025,840,730,645 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 82.06 ; \mathrm{H}, 9.53$. Found: C, 82.10; H, 9.55 .

2-Methyl-4-[(benzyloxy)methoxy]-2-pentene (16). In 10 mL of DMF were placed 2 -methyl-4-hydroxy-2-pentene (3.0 g , 32 mmol), diisopropylethylamine ($6.3 \mathrm{~mL}, 36.3 \mathrm{mmol}$), and benzyl chloromethyl ether ($4.50 \mathrm{~mL}, 32.7 \mathrm{mmol}$). The solution was stirred at room temperature for 2 days and poured into a mixture of water and petroleum ether, and the layers were separated. The organic layer was washed with $\mathrm{NH}_{4} \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}, 5 \% \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, 5 \% \mathrm{NaOH}$, and NaCl . The solution was dried, filtered, evaporated, and Kugelrohr distilled ($120^{\circ} \mathrm{C}, 0.6$ torr). This material was chromatogrqphed on silica gel (10% ether / hexane, $R_{f} 0.21$) to give $4.93 \mathrm{~g}(75 \%)$ of the ether: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.22(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 7), $1.66(3 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}, \mathrm{s}), 4.55(5 \mathrm{H}, \mathrm{m}), 5.0(1 \mathrm{H}, \mathrm{d}, J=9)$, 7.27 ($5 \mathrm{H}, \mathrm{s}$); IR (film) $2850,1495,1445,1375,1100,1040,1025$ cm^{-1}.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 76.32; $\mathrm{H}, 9.15$. Found: $\mathrm{C}, 76.17$; H, 8.92.

2,2,5-Trimethyl-5-(1-hydroxypropyl)-1,3-dioxolan-4-one (18). To a 3-L, three-necked round-bottomed flask fitted with a mechanical stirrer, a low-temperature thermometer, and a nitrogen inlet were added sequentially at $-78^{\circ} \mathrm{C} 150 \mathrm{~mL}(1.07 \mathrm{~mol})$ of diisopropylamine, 800 mL of THF, and $705 \mathrm{~mL}(1.05 \mathrm{~mol})$ of a 1.49 M solution of n-butyllithium in hexane. After the temperature of the LDA solution fell below $-70^{\circ} \mathrm{C}, 120 \mathrm{~mL}(0.945$ mol) of 17 was added by a motor-driven syringe over the course of 1 h . The temperature of the solution was kept below $-66^{\circ} \mathrm{C}$. After $30 \mathrm{~min}, 76.4 \mathrm{~mL}(1.06 \mathrm{~mol})$ of propanal was added over a $20-\mathrm{min}$ period. The temperature rose to $-62^{\circ} \mathrm{C}$. After an additional 5 min , the reaction was quenched with 100 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The phases were separated, and the water phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2×1 volume). The organic phase was washed with $1.2 \mathrm{M} \mathrm{HCl}(2 \times 500 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$, and brine $(500 \mathrm{~mL})$. The ether solution was dried over MgSO_{4}, and the solvent was removed by aspirator to yield $150.9 \mathrm{~g}(85 \%)$ of a $70: 30$ mixture of diastereomers: IR (thin film) $3500,3000,2950,1780,1460 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) erythro isomer $\delta 1.03(3 \mathrm{H}, \mathrm{brt}, \delta=7), 1.50(3 \mathrm{H}, \mathrm{s}), 1.60(6 \mathrm{H}, \mathrm{s}), 3.47$ ($1 \mathrm{H}, \mathrm{brt}, J=7$), $5.00(1 \mathrm{H}, \mathrm{br})$; threo isomer $\delta 1.03(3 \mathrm{H}$, br t, $J=7), 1.40(3 \mathrm{H}, \mathrm{s}), 1.60(6 \mathrm{H}, \mathrm{s}), 3.47(1 \mathrm{H}, \mathrm{brt}, J=7), 5.00$ ($1 \mathrm{H}, \mathrm{br}$). Preparative GLC ($10-\mathrm{ft}$ column, 8% Carbowax, 130 ${ }^{\circ} \mathrm{C}$) afforded the analytical sample.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C}, 57.45 ; \mathrm{H}, 8.51$. Found: C, 57.16; H, 8.45.
(\pm)-erythro-2,3-Dihydroxy-2-methylpentanoic Acid (19). To a mixture of the diastereomeric dioxolanones 18 ($128.37 \mathrm{~g}, 0.683$ mol) was added 220 mL of a 4.65 M solution of KOH in MeOH over a $5-\mathrm{min}$ period. After another $10 \mathrm{~min}, 25 \mathrm{~g}$ of solid $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the MeOH was removed by evaporation at reduced pressure. The residue was dissolved in water and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$. The water phase was acidified with 82 mL of concentrated HCl and then extracted with ethyl acetate ($8 \times$ 250 mL). The organic phase was dried over MgSO_{4}. Filtration and solvent removal gave $93.1 \mathrm{~g}(92 \%)$ of crude acid. Two recrystallizations from ethyl acetate gave $25.6 \mathrm{~g}(25.3 \%$, mp 153.5 ${ }^{\circ} \mathrm{C}$) of pure erythro acid (lit. ${ }^{7} \mathrm{mp} 153.5-154.5{ }^{\circ} \mathrm{C}$). The combined mother liquors eventually yielded another $11.9 \mathrm{~g}(9.9 \%)$ of erythro acid. The overall yield based on 3,3,5-trimethyl-2,4-dioxolanone (17) was 30%.

Methyl (\pm)-erythro-2,3-O-Isopropylidine-2,3-dihyroxy2 -methylpentanoate (20). To 25.6 g (0.173 mol) of (\pm) erythro acid 19 were added 52 mL of 1,2 -dichloroethane, 21 mL of methanol, and 0.52 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}{ }^{21}$ The mixture was refluxed overnight and then cooled and concentrated by using a rotary evaporator. The residue was partitioned between saturated NaHCO_{3} and ethyl acetate. The water phase was washed with ethyl acetate ($2 \times 200 \mathrm{~mL}$) and the combined organic fractions were dried over MgSO_{4}. Removal of solvent gave $25 \mathrm{~g}(89 \%)$ of the known methyl ester.

To 3.16 g (19.5 mmol) of the dihydroxy ester were added 20 mL of acetone and 0.05 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$. After the mixture was stirred for $3 \mathrm{~h}, 5 \mathrm{~mL}$ of saturated NaHCO_{3} was added to the mixture, and the acetone was removed in vacuo. The water phase was extracted with ether ($3 \times 50 \mathrm{~mL}$), and the ether phase was dried over MgSO_{4}. Removal of solvent gave $3.5 \mathrm{~g}(88 \%)$ of the known ${ }^{4}$ acetonide 20.
(\pm)-erythro-2,3-O-Isopropylidine-2,3-dihydroxy-2methylpentanal (5). The acetonide ester 20 was converted to its corresponding alcohol by a literature procedure employing LiAlH_{4} as the reductant. ${ }^{4}$ To $2.0 \mathrm{~g}(11.5 \mathrm{mmol})$ of this alcohol in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $3.72 \mathrm{~g}(17.24 \mathrm{mmol})$ of pyridinium chlorochromate. After 15 h of being stirred, the black-brown mixture was diluted with 1 volume of ether and 1 volume of pentane. The mixture was filtered through a short plug of silica $\mathrm{gel}(15 \mathrm{~g}, 60-200 \mathrm{mesh})$ topped with sand. The black residue was extracted several times with small portions of ether. Removal of solvent gave the known ${ }^{4}$ aldehyde ($1.78 \mathrm{~g}, 90 \%$). The NMR spectrum was unchanged upon distillation $\left[\mathrm{bp} 90-95^{\circ} \mathrm{C}(60\right.$ torr $\left.)\right]$.

Preparative GLC ($5 \mathrm{ft} \times 1 / 4$ in. column, $8 \% \mathrm{SE}-30$ on Chrom G $60 / 80$ at $125^{\circ} \mathrm{C}$, flow rate $60 \mathrm{~mL} / \mathrm{min} ; t_{\mathrm{R}}=3.75 \mathrm{~min}$) gave the analytical sample: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.6(1 \mathrm{H}, \mathrm{s}), 3.8(1 \mathrm{H}, \mathrm{t}$, $J=7$), $3.8(1 \mathrm{H}, \mathrm{t}, J=7), 1.59(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}$, s), $1.5(2 \mathrm{H}, \mathrm{m}), 1.00(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6)$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$: $\mathrm{C}, 62.77$; $\mathrm{H}, 9.36$. Found: $\mathrm{C}, 61.57$; H, 9.42.
Repeated attempts to obtain satisfactory combustion analysis were unsuccessful. Low results for carbon were consistently obtained ($59.32-61.57 \%$). The authors who originally reported aldehyde 5^{4} also do not give analytical values.
2,6-Di-tert-butyl-4-methylphenyl Propionate (13). In a $50-\mathrm{mL}$, three-necked, round-bottomed flask under nitrogen was placed 2,6 -di-tert-butyl-4-methylphenol ($2.60 \mathrm{~g}, 11.8 \mathrm{mmol}$). Tetrahydrofuran (12 mL) was added, and the solution was cooled to $0^{\circ} \mathrm{C}$. A solution of $n-\mathrm{BuLi}(1.5 \mathrm{M}$ in hexane, $7.90 \mathrm{~mL}, 11.85$ mmol) was added at this temperature, and after the solution had returned to $0^{\circ} \mathrm{C}$, propionyl chloride ($1.54 \mathrm{~mL}, 17.7 \mathrm{mmol}$) was added. The solution was stirred overnight, poured into $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with ether. The combined organic phases were washed with NaHCO 3 and NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. Kugelrohr distillation ($120^{\circ} \mathrm{C}, 0.5$ torr) gave 3.12 g of ester $13(96 \%)$. Analysis by GLC ($10-\mathrm{ft}$ column, 8% SE-30, $130^{\circ} \mathrm{C}$) showed a single peak with a retention time of 13 min: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00(18 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}), 2.63(2 \mathrm{H}$, $\mathrm{q}, J=7$), $7.03(2 \mathrm{H}, \mathrm{s}$); IR (thin film) $3070,2950,2870,1760,1600$, $1480,1460,1420,1395,1360,1345,1270,1220,1220,1185,1145$, $1110,1075,980,890,860,800 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}: \mathrm{C}, 78.21 ; \mathrm{H}, 10.21$. Found: $\mathrm{C}, 78.34$; H, 10.15 .

The known ${ }^{22} 12$ was prepared in the same manner in 94% yield.
General Procedure for Aldol Condensations. Preparation of ($6 R$)-2,4-Dimethyl-5-hydroxy-6,7-O-isopropylidine-2-[(trimethylsilyl)oxy]-3-heptanones 30 e and 31 e . To a solution of 0.55 mL (3.9 mmol) of diisopropylamine in 10 mL of dry THF at $0^{\circ} \mathrm{C}$ was added $2.6 \mathrm{~mL}(3.9 \mathrm{mmol})$ of a 1.5 M solution of n-butyllithium in hexane. After 10 min the solution was cooled to $-70^{\circ} \mathrm{C}$, and 0.66 g (3.5 mmol) of 2-methyl-2-(trimethylsil-oxy)-3-pentanone (9) was added over 3 min . After the mixture was stirred at $-70^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, 0.46 \mathrm{~g}(3.5 \mathrm{mmol})$ of (R)-glyceraldehyde acetonide was added, and the mixture was stirred 20 min and quenched with 10 mL of saturated NaHCO_{3}. After warming to room temperature, the reaction mixture was extracted two times with ether. The ether layers were combined, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to give $0.83 \mathrm{~g}(75 \%)$ of a mixture of $\mathbf{3 0 e}(78 \%)$, $\mathbf{3 1 e}$ ($\mathbf{1 8 \%}$), and 4% or a threo diastereomer as a pale yellow oil: IR (thin film) $3500,1705,1460,1380,1370,1250,1200$, $1040,1060,950,940 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.23(9 \mathrm{H}, \mathrm{s}), 1.0-1.3$ (3 H , mixture of doublets), 1.3-1.6 (12 H , unresolved singlets, 3.0-4.2 (4 H, m); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) δ 2.1, 10.7, 13.7 (minor), 25.1, $26.3,26.6,27.0,27.4,39.8,43.1$ (minor), 66.0 (minor), 67.1, 71.6 (minor), 72.7, 75.2, 76.7 (minor), 80.3, 108.9, 219.6.

Anal. Caled for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}$: C, 56.57 ; H, 9.49. Found: C, 56.45 ; H, 9.35.

Methyl 3-Hydroxy-4-[(tert-butyldimethylsilyl)oxy]pentanoates 21a and 22a. An aldol reaction under standard conditions gave a $1: 1$ mixture of diastereomers in a 67% yield after column chromatography (10% ether/hexane, $R_{f} 0.12$): IR (film) $3500,1740,1440,1250,1080,835,775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.10(6 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s}), 1.13$ and $1.20(3 \mathrm{H}$ total, d, $J=7), 2.50$ $(2 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 172.9,172.4$, $72.3,71.7,70.8,70.2,51.2,37.5,36.7,25.5,19.0,18.8,-4.7,-5.1$; high-resolution mass spectrum on the $\mathrm{M}-15$ ion, calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Si} m / e 247.13695$, found m / e 247.1370.

Methyl 3-Hydroxy-4-(benzyloxy)pentanoates 21b and 22b. Aldol reaction under standard conditions gave a $1: 1$ mixture of diastereomers in 41% yield after chromatography (30% ether/ hexane, $R_{f} 0.12$): IR (film) $3450,1735,1440,1285,1080,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.18(3 \mathrm{H}, \mathrm{d}, J=7), 2.50(2 \mathrm{H}, \mathrm{m}), 3.60(3$ $\mathrm{H}, \mathrm{s}), 4.45(2 \mathrm{H}, \mathrm{m}), 7.23(5 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\delta 128.2,127.677 .0$, 76.5, 70.9, $51.5,37.6,37.0,15.0$; high-resolution mass spectrum calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} m / e 238.1205$, found $m / e 238.1204$.
(22) A. Volod'kin, D. Rasuleva, V. Ershov, Izv. Akad. Nauk SSSR, Ser. Khim., 178 (1972).
(21) R. O. Clinton and S. C. Laskowski, J. Am. Chem. Soc., 70, 3135 (1948)

Methyl 3-Hydroxy-4-[(benzyloxy)methoxy]pentanoates 21c and 22c. An aldol reaction under standard conditions gave a $1: 1$ mixture of diastereomers in 61% yield after chromatography (30% ether/hexane, $R_{f} 0.13$): IR (film) $3500,1740,1440,1265$, $1160,1100,1040 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.17$ and $1.20(3 \mathrm{H}, \mathrm{d}$, $J=7), 2.50(2 \mathrm{H}, \mathrm{m}), 3.60(3 \mathrm{H}, \mathrm{s}), 4.53(2 \mathrm{H}, \mathrm{s}), 4.72(2 \mathrm{H}, \mathrm{s})$, $7.25(5 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR δ 128.2, 127.6, 127.5, 93.4, 76.1, 75.7, 70.9, $69.5,51.4,37.5,36.8,15.6$. Satisfactory analytical data could not be obtained for this compound, and it showed no suitable ions for exact mass spectrometric measurement.
2,4-Dimethyl-2-[(trimethylsilyl)oxy]-5-hydroxy-6-[(tert-butyldimethylsilyl)oxy]-3-heptanones 23 a and 24a. Aldol reaction under standard conditions gave a $2: 1$ mixture of diastereomers in 41% yield after chromatography (10% ether/ hexane): IR (film) $3500,1700,1460,1375,1255,1200,1090,1040$, $900,840,780 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.10(6 \mathrm{H}, \mathrm{s}), 0.20(9 \mathrm{H}$, s), $0.90(9 \mathrm{H}, \mathrm{s}), 1.15(6 \mathrm{H}, \mathrm{m}), 1.30(3 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{s}), 3.50$ ($2 \mathrm{H}, \mathrm{m}$) ${ }^{13} \mathrm{C}$ NMR $\delta 76.0,75.1$ (minor), 70.3 (minor), $68.5,42.6$ (minor), 39.6, 27.5, 25.8, 20.7 (minor), 14.6, 12.2 (minor), 11.1, 2.3, -4.2, -4.9.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}_{2}: \mathrm{C}, 57.39 ; \mathrm{H}, 10.70$. Found: C, 57.35; H, 10.96.

2,4-Dimethyl-2-[(trimethylsilyl)oxy]-5-hydroxy-6-(ben-zyloxy)-3-heptanones 23b and 24b. An aldol reaction under standard conditions gave a mixture of diastereomers in 51% yield after chromatography (10% ether/hexane, $R_{f} 0.19$): \mathbb{R} (film) 3500 , $1705,1455,1380,1255,1200,1040,900,840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.16(9 \mathrm{H}, \mathrm{s}), 1.02$ and $1.05(3 \mathrm{H}, \mathrm{d}, J=7), 1.20(3 \mathrm{H}, \mathrm{d}, J=$ 7), $1.27(3 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{s}), 3.3-3.7(3 \mathrm{H}, \mathrm{m}), 4.40(2 \mathrm{H}, \mathrm{m}), 7.23$ ($5 \mathrm{H}, \mathrm{s}$) ${ }^{13} \mathrm{C}$ NMR $\delta 220.1,217.4$ (minor), 138.4, 128.1, 127.5, 127.3, 76.0, 74.9, 74.5, 74.0, 70.7 (minor), 70.3, 41.9 (minor), 39.7, 27.8 (minor), 27.5, 27.4, 27.3, 15.8 (minor), 15.2, 12.4 (minor), 11.1, 2.0; high-resolution mass spectrum on $\mathrm{M}-33$ ion calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}$ $m / e 319.1729$, found $m / e 319.1720$.

2,4-Dimethyl-2-[(trimethylsilyl)oxy]-5-hydroxy-6-[(ben-zyloxy)methoxy]-3-heptanones 23c and 24c. An aldol reaction under standard conditions gave a $4: 1$ mixture of diastereomers after chromatography (30% ether/hexane, $R_{f} 0.31$): IR (film) 3500 , $1700,1450,1380,1250,1200,1040,910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.17(9 \mathrm{H}, \mathrm{s}), 1.0-1.2(12 \mathrm{H}, \mathrm{m}), 3.40-3.7(3 \mathrm{H}, \mathrm{m}), 4.50-4.80(4$ H, m), $7.27(5 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR major isomer $\delta 128.3,127.7,92.9$, $74.7,73.4,69.6,39.8,27.7,27.4,15.8,11.6,2.2$; minor isomer $\delta 128.4$, $127.8,127.7,94.0,75.9 .74 .8,69.8,41.7,29.7,28.1,27.8,27.5,17.1$, 11.3, 2.4.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 62.79 ; \mathrm{H}, 8.96$. Found: $\mathrm{C}, 62.56$; H, 8.88 .
(4R)-Methyl 2,4-O-Isopropylidene-3,4,5-trihydroxypentanoates 28a and 29a. The crude aldol was isolated in 74% yield on a 5 -mmol scale. An analytical sample was prepared by column chromatography on silica gel, eluting with 40% ether in hexanes ($R_{p} 0.39$): IR (film) 3450, 2990, 2940, 1725, 1440, 1375, $1260,1210,1060,850 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30(3 \mathrm{H}, \mathrm{s}), 1.40$ $(3 \mathrm{H}, \mathrm{s}), 2.50(2 \mathrm{H}, \mathrm{s}) .3 .10(1 \mathrm{H}, \mathrm{Br}), 3.95(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.0,26.3$ (minor), 26.5, 37.6, 38.1 (minor), 51.1, 65.5 (minor), 66.2; 77.7, 109.5.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5}$: $\mathrm{C}, 52.94 ; \mathrm{H}, 7.90$. Found: C, 52.99 ; H, 7.81.
(4R)-2,6-Di-tert-butyl-4-methylphenyl 4,5-O-Iso-propylidene- $3,4,5$-hydroxypentanoates 28 b and 29 b . The crude product was obtained in 72% yield on a 5 -mmol scale. An analytical sample was prepared by chromatography on silica gel with 40% ether in hexanes as the eluant ($R_{f} 0.27$): IR (film) 3450, $2950,2910,1740,1500,1365,1150,860 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.30(18 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 2.25(3 \mathrm{H}, \mathrm{s}), 2.90(2$ H, m), $3.40(1 \mathrm{H}, \mathrm{br}), 3.95(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 20.9,24.7$, 25.8 (minor), 25.3, 31.0, 38.9, 64.9 (minor), 66.5, 66.8 (minor), 68.5, 109.0, 126.5, 172.9.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{5}: \mathrm{C}, 70.38 ; \mathrm{H}, 9.24$. Found: $\mathrm{C}, 70.70$; H, 9.50 .
($6 R$)-6,7-O-Isopropylidene-5,6,7-trihydroxy-2,2-di-methylheptan-3-ones 28 c and 29c. The crude product was obtained in 87% yield on a 5 -mmol scale. An analytical sample ($\mathrm{mp} 54-55^{\circ} \mathrm{C}$) was prepared by recrystallization from pentane. ${ }^{13} \mathrm{C}$ NMR spectroscopy showed that both the crude and crystalline products were a single diastereomer: IR (film) 3450, 2970, 2920, $2880,1690,1465,1370,1210,1060,860 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}$)
$\delta 1.12(9 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{s}), 2.85(2 \mathrm{H}, \mathrm{m}), 3.40(1$ $\mathrm{H}, \mathrm{br}), 4.00(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.2,26.3,26.7,39.7$, 67.2, 69.6, 77.7.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4}: \mathrm{C}, 62.60 ; \mathrm{H}, 9.63$. Found: C, 62.72; H, 9.64.
($6 R$)-6,7- O-Isopropylidene-2,5,6,7-tetrahydroxy-2-methylheptan-3-ones 28d and 29d. The general procedure was followed, the crude product was treated with 0.5% methanolic $\mathrm{HCl}(10 \mathrm{~mL})$ for 1 h , the mixture was neutralized with saturated aqueous NaHCO_{3} and extracted with ether, the extract was dried over anhydrous MgSO_{4} and filtered, and the solvent was removed in vacuo to give a 77% yield on a $5-\mathrm{mmol}$ scale. An analytical sample was prepared by column chromatography on silica gel with $3 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} as the eluant: IR (film) $3430,2990,1710$, $1370,1215,1155,1060,970,850 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.30$ $(6 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 2.80(2 \mathrm{H}, \mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{br})$, $4.00(4 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.1,26.3,26.7,39.3$ (minor), 39.4, 65.5 (minor), 66.8, 68.1 (minor), 69.1, 76.4 (minor), 76.5, 77.3, 109.6, 215.1.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{5}$: $\mathrm{C}, 56.88 ; \mathrm{H}, 8.68$. Found: $\mathrm{C}, 56.65$; H, 8.43.
($3 S, 4 R$)-Methyl 4,5-O-Isopropylidene-3,4,5-trihydroxy-2methylpentanoates 30a and 32a. The crude aldol was obtained in 87% yield on a $5-\mathrm{mmol}$ scale. An analytical sample was prepared by column chromatography on silica gel with 50% ether in hexane as the eluant ($R_{f} 0.34$): IR (film) 3470, 2990, 2950, 2880, $1725,1460,1435,1380,1370,1255,1210,1060,850,760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.30(3 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{s}), 2.80(2 \mathrm{H}, \mathrm{m}), 3.80$ $(3 \mathrm{H}, \mathrm{s}), 4.00(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 10.4,14.5$ (minor), 25.2, 25.9 (minor), 26.2, 41.1, 51.7, 66.8 (minor), 67.1, 72.4, 74.6, 75.0 (minor), 75.4.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{5}$: C, 55.03; $\mathrm{H}, 8.31$. Found: C, 55.21 ; H, 8.15.
(5R)-2,6-Di-tert-butyl-4-methylphenyl 4,5-O-Iso-propylidine- $3,4,5$-trihydroxy- 2 -methylpentanoates $30 \mathrm{~b}, 3 \mathrm{lb}$, 32b, and 33b. Aldol condensations under standard conditions gave 100% yields of crude product. The ${ }^{13} \mathrm{C}$ NMR spectrum of the crude product showed two threo adducts ($\mathrm{C}-2$ methyl shifts of 14.6 and 12.5 ppm) and a single erythro resonance (9.1 ppm). Integration of the ${ }^{13} \mathrm{C}$ NMR resonances gave values of 46 and 32% for the two threo adducts and 22% for the erythro products. The mixture was chromatographed on silica gel (30% ether/hexane) to obtain a threo fraction and an erythro fraction. The threo fraction ($R_{f} 0.26$) showed the two diastereomers to be present in a ratio of $2: 1:{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 175.6,141.9,134.3,127.0,126.8$, 76.4 (minor), 75.4, 71.3, 67.6, 65.9 (minor), 44.3 (minor), 42.1, 31.3, $26.6,26.0,25.3,25.1,21.2,14.6,12.5$ (minor). This fraction slowly crystallized. Recrystallization from hexane provided one nearly pure threo diastereomer (32b), mp $70-72^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{5}$: C, 70.90; H, 9.42. Found: C, 71.05; H, 9.52.

The erythro fraction was contaminated with the threo adducts. This material was chromatographed again to obtain a fraction which contained only erythro material: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 127.2$, 127.0, 74.7, 72.0, 67.8, 41.8, 35.2, 31.4, 31.3, 26.9, 25.3, 21.3, 9.1. This fraction was shown to be a $3: 1$ mixture of both erythro diastereomers 30b and 31b by reduction to a 3:1 mixture of diols 39 and 40 (vide infra).
($6 R$)-6,7-O-Isopropylidine-5,6,7-trihydroxy-2,2,4-tri-methylheptan- 3 -ones 30 c and 31c. The two aldols were obtained in a ratio of 6:1 in 43% yield on a $5-\mathrm{mmol}$ scale: ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 10.4,15.5$ (minor), 25.1, 25.8, 26.7, 39., 43.9, 45.0 (minor), 66.1, 67.4, 71.9 (minor), 72.9, 74.0 (minor), 74.8, 109.1, 221.8.

The two diastereomers were separated by chromatography on silica gel with 40% ether in hexanes as the eluant.
(5S,6R)-6,7-O-Isopropylidene-5,6,7-trihydroxy-2,2,4-tri-methylheptan-3-one (30c): $R_{f} 0.16$; IR (film) 3500, 2960, 2880, $1690,1480,1375,1260,1220,1065,900,850 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.12(3 \mathrm{H}, \mathrm{d}, J=7), 1.15(9 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s})$, $3.45(1 \mathrm{H}, \mathrm{dq}, J=7,1), 3.55(2 \mathrm{H}, \mathrm{m}), 3.9-4.1(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.4,25.7,25.8,26.8$ 39.2, 45.0, 67.4, 72.9, 74.78, 109.1.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{4}$: C, 63.91; H, 9.90. Found: C, 63.83; H, 9.79.
(4R,5R,6R)-6,7-O-Isopropylidene-5,6,7-trihydroxy-2,2,4-trimethylheptan-3-one (31c): $R_{f} 0.27$; mp: $81-82^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right)$ $3500,2900,1795,1375,1040,850 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.17$
($9 \mathrm{H}, \mathrm{s}$), 1.22 ($3 \mathrm{H}, \mathrm{d}, J=7$), 1.31 ($3 \mathrm{H}, \mathrm{s}$), $1.44(3 \mathrm{H}, \mathrm{s}$), 2.22 (1 $\mathrm{H}, \mathrm{d}, J=8$), $3.10-3.21(1 \mathrm{H}, \mathrm{dq}, J=7,1), 3.66(1 \mathrm{H}, \mathrm{dd}, J=8$, 1), $3.75-4.05$ ($3 \mathrm{H}, \mathrm{m}$).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{4}: \mathrm{C}, 63.91 ; \mathrm{H}, 9.90$. Found: C, 64.01; H, 10.16.
($3 S R, 4 R S$)-3,5-Dimethyl-4-hydroxy-4,5-dihydrofuran-2-(3H)-ones 25 and 26. (a) From Aldols 23b and 24b. A 2:1 mixture of the aldols ($326 \mathrm{mg}, 0.93 \mathrm{mmol}$) was dissolved in 3 mL of methanol, and a solution of periodic acid ($0.84 \mathrm{~g}, 3.68 \mathrm{mmol}$) in 2 mL of water was added. After being stirred overnight, the reaction mixture was poured into a mixture of water and ether, and the layers were separated. Ether extraction, followed by washing with NaCl , drying $\left(\mathrm{MgSO}_{4}\right)$, filtration, and evaporation gave 220 mg (100%) of the β-hydroxy acid, which solidified on standing: IR (film) $3450-2500,1710,1450,1210,1100,1065,985$, $740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.0-1.3(6 \mathrm{H}, \mathrm{m}), 2.7(1 \mathrm{H}, \mathrm{m}), 3.40$ ($1 \mathrm{H}, \mathrm{q}, J=7$), $3.85(1 \mathrm{H}, \mathrm{dd}, J=5,7$), $4.33(1 \mathrm{H}, \mathrm{d}, J=12), 4.53$ ($1 \mathrm{H}, \mathrm{d}, J=12$), $7.23(5 \mathrm{H}, \mathrm{s})$. Recrystallization from hexane-ether gave one of the diastereomers in pure form; $\mathrm{mp} 87-88^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$: $\mathrm{C}, 65.53 ; \mathrm{H}, 7.61$. Found: $\mathrm{C}, 65.33$; H, 7.49.
Anhydrous ammonia (10 mL) was distilled into a $50-\mathrm{mL}$, round-bottomed flask. The flask was cooled to $-78^{\circ} \mathrm{C}$, and lithium wire ($0.03 \mathrm{~g}, 5.14 \mathrm{mmol}$) was added. After the mixture was stirred for 30 min , 2-methyl-3-hydroxy-4-(benzyloxy)pentanoic acid (220 $\mathrm{mg}, 0.93 \mathrm{mmol}$) was added in 2 mL of THF. The resulting solution was stirred for 1 h and the ammonia allowed to evaporate. Ether and water were added, and the reaction mixture was acidified with 2 mL of concentrated HCl . The solution was saturated with salt, the layers were separated, and the aqueous layer was extracted with ether. Drying (MgSO_{4}), filtration, and evaporation gave 98 $\mathrm{mg}(82 \%)$ of a $2: 1$ mixture of lactones, which were separated by preparative GLC ($10-\mathrm{ft}$ column, $8 \% \mathrm{SE}-30,180^{\circ} \mathrm{C}$).

For the major isomer ($t_{\mathrm{R}}=3.4 \mathrm{~min}, 25$): IR (film) 3450, 1760, $1455,1390,1380.1320,1240,1190,1065,1040,965,915 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.26(3 \mathrm{H}, \mathrm{d}, J=7), 1.45(3 \mathrm{H}, \mathrm{d}, J=6), 2.55$ ($1 \mathrm{H}, \mathrm{dq}, J=7,7$), $2.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.60(1 \mathrm{H}, \mathrm{dd}, J=7,8), 4.13$ $(1 \mathrm{H}, \mathrm{dq}, J=8,6) ;{ }^{18} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 80.4,80.2,43.8,17.9,12.4$.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{1 \mathrm{C}} \mathrm{O}_{3}: \mathrm{C}, 55.37 ; \mathrm{H}, 7.74$. Found: $\mathrm{C}, 55.21$; H, 7.87.

For the minor isomer ($t_{\mathrm{R}}=4.0 \mathrm{~min}, 26$): IR (film) 3450,1760 , 1455, 1380, 1190, 1055, $845 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.23(3 \mathrm{H}$, d, $J=7$), $1.30(3 \mathrm{H}, \mathrm{d}, \mathrm{c}=6), 2.50(1 \mathrm{H}, \mathrm{dq}, J=5,7$), $4.00(1$ $\mathrm{H}, \mathrm{t}, J=5), 4.5(1 \mathrm{H}, \mathrm{dq}, J=5,6) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 78.3$, 75.1, 43.3, 12.9, 12.7.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3}$: $\mathrm{C}, 55.37 ; \mathrm{H}, 7.74$. Found: $\mathrm{C}, 55.05$; H, 7.81 .
(b) From Aldols 23c and 24c. A 4:1 mixture of aldols 23c and 24 c was cleaved in the foregoing manner with periodic acid. The crude mixture of acids, analytically pure, was obtained in 63% yield: IR (film) $3400-2500,1710,1460,1390,1180,1110,1040$, $1035,740,705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.23(3 \mathrm{H}, \mathrm{d}, J=7$), 1.27 ($3 \mathrm{H}, \mathrm{d}, J=7$) , $2.72(1 \mathrm{H}, \mathrm{dq}, J=2,7), 3.80(2 \mathrm{H}, \mathrm{m}), 4.53(2 \mathrm{H}$, s), $4.65(1 \mathrm{H}, \mathrm{d}, J=6), 4.75(1 \mathrm{H}, \mathrm{d}, J=6), 7.23(5 \mathrm{H}, \mathrm{s})$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}$: $\mathrm{C}, 62.67 ; \mathrm{H}, 7.51$. Found: $\mathrm{C}, 62.76$; H, 7.56.

When the benzyl group was hydrogenolyzed and the resulting dihydroxy acid lactonized as described in part a, lactones 25 and 26 were obtained in quantitative yield. Analysis of this mixture by ${ }^{1} \mathrm{H}$ NMR and GLC showed it to be $>90 \% 25$ and $<10 \% 26$.
($6 R$)-6,7-O-Isopropylidene-5,6,7-trihydroxy-2,2,4-tri-methylheptan-3-ones 30 c and 32c. To a solution of esters 30 a and 32a, as crude aldol products ($1.00 \mathrm{~g}, 4.58 \mathrm{mmol}$), in THF (18 mL) at $-78^{\circ} \mathrm{C}$ was added tert-butyllithium ($4.82 \mathrm{~mL}, 9.16 \mathrm{mmol}$, as a 1.9 M solution in pentane) in one portion. The mixture was allowed to warm to $0^{\circ} \mathrm{C}$ with stirring and was then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The layers were separated, and the aqueous phase was extracted with ether ($3 \times 25 \mathrm{~mL}$). The combined organic phases were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The diastereomers were separated by chromatography on silica gel (35 g) with 40% ether in hexanes to give $140 \mathrm{mg}(13 \%)$ of $30 \mathrm{c}\left(R_{f} 0.16\right)$ and $62 \mathrm{mg}(5.5 \%)$ of $32 \mathrm{c}\left(R_{f} 0.36\right)$.
($\mathbf{4 S , 5 S , 6 R \text {)-6,7-O-Isopropylidene-5,6,7-trihydroxy-2,2,4- }}$ trimethylheptan-3-one (30c). The IR, ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR spectra of this material were identical with those of the major
component prepared by condensation of ethyl tert-butyl ketone with aldehyde 4 (vide supra).
($4 R, 5 R, 6 R$)-6,7- O-Isopropylidene-5,6,7-trihydroxy-2,2,4-trimethylheptan-3-one (32c): IR (film) 3490, 2950, 1700, 1480, $1460,1370,1220,1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.12(9 \mathrm{H}, \mathrm{s})$, $1.2-1.4(9 \mathrm{H}, \mathrm{m}), 3.4(2 \mathrm{H}, \mathrm{m}), 3.6(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 15.9,25.2,26.0,26.6,39.9,67.6,76.5,78.0,109.2$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{O}_{4}$: $\mathrm{C}, 63.91 ; \mathrm{H}, 9.90$. Found: $\mathrm{C}, 64.05$; H, 9.96.

2-Deoxy-D-ribose (35) and 2-Deoxy-D-lyxose (36). (a) Aldol Route. To a suspension of lithium aluminum hydride (245 mg , 6.5 mmol) in THF (25 mL), under nitrogen, was added a solution of ketones 28d and 29d ($500 \mathrm{mg}, 2.15 \mathrm{mmol}$) in THF (10 mL), and the mixture was stirred for 1 h at room temperature. The reaction was quenched with water $(0.24 \mathrm{~mL}), 15 \%$ aqueous NaOH $(0.24 \mathrm{~mL})$, and water (0.75 mL), and the resulting suspension was stirred for an additional 2 h . To this was added anhydrous MgSO_{4}, and the mixture shaken and filtered through a sintered-glass frit. The filter cake was washed with ether, and the combined filtrates were concentrated in vacuo to give $504 \mathrm{mg}(100 \%)$ of analytically pure material: IR (film) $3420,2980,2940,2880,1370,1215,1065$, $910 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.19(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.35(3$ $\mathrm{H}, \mathrm{s}), 1.42(3 \mathrm{H}, \mathrm{s}), 1.8-1.9(2 \mathrm{H}, \mathrm{m}), 2.1-2.8$ ($3 \mathrm{H}, \mathrm{br}$), 3.5-4.1 (5 H, m).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{5}$: C, 56.39; $\mathrm{H}, 9.47$. Found: C, 56.04 ; H, 9.55.

To a solution of this triol mixture ($1.00 \mathrm{~g}, 4.30 \mathrm{mmol}$) in 25 mL of absolute ethanol was added a solution of $\mathrm{NaIO}_{4}(913 \mathrm{mg}, 4.30$ mmol) in water (38 mL) containing enough saturated NaHCO_{3} solution to raise the pH to 6.0. This was stirred for 1 h at room temperature. Most of the ethanol was removed in vacuo and the aqueous residue extracted with chloroform ($2 \times 75 \mathrm{~mL}$). The combined extracts were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo to give 710 mg of aldehydes $34(95 \%)$. An analytical sample was prepared by chromatography on silica gel ($10 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CHCl}_{3}, R_{f} 0.42$): IR (film) $3420,2980,2940$, $1720,1370,1215,1060,850,755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.25$ ($3 \mathrm{H}, \mathrm{s}$), $1.35(3 \mathrm{H}, \mathrm{s}), 2.4-2.7(2 \mathrm{H}, \mathrm{m}), 3.8-4.0(4 \mathrm{H}, \mathrm{m}), 9.80(1$ H, m).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 55.16 ; \mathrm{H}, 8.10$. Found: C, 55.43 ; H, 8.06.

To a $50-\mathrm{mL}$, round-bottomed flask containing 60% (v/v) aqueous acetic acid (20 mL) was added aldehyde 34 ($500 \mathrm{mg}, 2.9$ mmol), and the mixture was stirred for 12 h at room temperature. The solvent was removed in vacuo to give a dark yellow syrup. This was chromatographed on silica gel (16 g) with $20 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} to give $138 \mathrm{mg}(35 \%)$ of a mixture of 35 and 36 as a colorless syrup: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 1.5-2.5(2 \mathrm{H}, \mathrm{m}), 3.4-4.3(4 \mathrm{H}$, m), $5.1(0.75 \mathrm{H}, \mathrm{dd}, J=3,5)$, $5.5(0.25 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 36.5,37.8,39.1$ (minor) 41.4, 43.8 (minor), 64.2, 65.2, 65.4, 67.2 , $68.4,69.1,69.8,70.0,70.6,72.4,72.8,73.6,73.8,87.8,88.4,94.2$, $96.3,96.6$ (minor), $100.7 ;[\alpha]^{20}{ }_{\mathrm{D}}+34^{\circ}$ (equilibrium, $\mathrm{c} 0.5, \mathrm{H}_{2} \mathrm{O}$).
(b) Grignard Route. To a $100-\mathrm{mL}$ three-necked roundbottomed flask equipped with a reflux condenser, nitrogen inlet, and dropping funnel was added Mg turnings ($748 \mathrm{mg}, 31 \mathrm{mmol}$) and the flask flame dried. After this had cooled, ether (25 mL) was added and the dropping funnel charged with a solution of allyl bromide ($4.125 \mathrm{~g}, 2.951 \mathrm{~mL}, 34 \mathrm{mmol}$) in ether (12 mL). A small crystal of iodine was added to the flask, and the allyl bromide solution was added at such a rate as to maintain a gentle reflux. When the addition was complete, the solution was allowed to stir for an additional 20 min , followed by dropwise addition of aldehyde $4(4.0 \mathrm{~g}, 31 \mathrm{mmol})$ in ether $(12 \mathrm{~mL})$. When the addition was complete, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) was added dropwise, and the resulting mixture was allowed to stir for 1 h . The layers were separated, and the aqueous phase was extracted with ether ($2 \times 70 \mathrm{~mL}$). The combined organic fractions were washed with brine, dried over anhydrous MgSO_{4}, and filtered. The solvent was removed in vacuo to give 3.18 g (59%) of crude product. An analytical sample was prepared by chromatography on silica gel with 50% ether in hexanes as the eluant ($R_{f} 0.32$): IR (capillary film) $3080,2990,2950,2900,1640,1370,1220,1065$, $915,855 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.35(3 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{s})$, 2.0-2.3 ($2 \mathrm{H}, \mathrm{m}$), 3.5-4.0 ($4 \mathrm{H}, \mathrm{m}$), $5.1(2 \mathrm{H}, \mathrm{m})$, 5.6-6.0 ($1 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 26.2,26.5,37.6,38.7$ (minor), 65.3 , 65.9 (minor), 70.6, 71.5 (minor), 78.1, 78.5 (minor), 117.6 (minor), 118.0, 134.0.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{3}$: C, 62.77; $\mathrm{H}, 9.36$. Found: C, 62.72; H, 9.22.

To a $25-\mathrm{mL}$, round-bottomed flask were added 410 mg (2.4 mmol) of the foregoing alcohol and 10 mL of aqueous acetic acid. The solution was stirred at room temperature for 6 h . The solvent was removed in vacuo, and the crude product crystallized on standing overnight. This material was twice recrystallized from ethyl acetate to give $170 \mathrm{mg}(54 \%)$ of extremely hygroscopic white crystals: mp $37-38^{\circ} \mathrm{C}$; IR (Nujol mull) $3300,2920,1640,1460$, $1060,1030,920,870 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.9-2.6(2 \mathrm{H}$, $\mathrm{m}), 3.1-3.6(4 \mathrm{H}, \mathrm{m}), 4.1-4.5(3 \mathrm{H}, \mathrm{m}), 4.8-5.2(2 \mathrm{H}, \mathrm{m}), 5.6-6.1$ ($1 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 39.3,39.8$ (minor), 65.3, 65.6 (minor), 73.6 (minor), 74.0, 46.4 (minor), 76.9, 120.4, 137.8.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}$: C, $54.33 ; \mathrm{H}, 9.15$. Found: C, 54.39 ; H, 9.16.

Ozone was bubbled through a solution of $1.20 \mathrm{~g}(9.1 \mathrm{mmol})$ of this alkene in 30 mL of $\mathrm{CH}_{3} \mathrm{OH}$ at a rate of $0.25 \mathrm{mmol} \mathrm{min}^{-1}$ at $-78^{\circ} \mathrm{C}$. After 45 min , a light blue color had developed, and the residual ozone was removed by bubbling oxygen through the cooled solution for 15 min . To this was added dimethyl sulfide (5 mL), and the mixture was allowed to warm to room temperature with stirring. The solvents were removed in vacuo, and the crude material was chromatographed on silica gel (85 g) with 11% $\mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} to give 778 mg of a mixture of 35 and $36(64 \%)$: IR (thin film) $3350,2940,1650,1070 \mathrm{~cm}^{-1} ;{ }^{1}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 1.5-2.5$ $(2 \mathrm{H}, \mathrm{m}), 3.4-4.3(4 \mathrm{H}, \mathrm{m}), 5.1(0.75 \mathrm{H}, \mathrm{dd}, J=3,5), 5.5(0.25 \mathrm{H}$, m); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) δ 36.4, 37.8, 41.5, 43.8, 43.9, 65.3, 65.5, 67.3, $67.7,68.7,69.2,70.0,70.2,70.4,70.7,72.4,72.9,73.4,73.6,73.8$, 73.9, 88.0, 88.5, 94.3, 96.6, 96.8, 100.8.
(2R)-1,2-O-Isopropylidinepentane-1,2,3,5-tetraols 37 and 38. (a) From Esters 28a and 29a. To a suspension of lithium aluminum hydride ($260 \mathrm{mg}, 6.9 \mathrm{mmol}$) in THF (35 mL) under N_{2} was added a mixture of esters 28 a and $29 \mathrm{a}(700 \mathrm{mg}, 3.43 \mathrm{mmol}$) in THF (15 mL), and the mixture was allowed to stir for 2 h at room temperature. The reaction was quenched by the addition of water (0.26 mL), 15% aqueous $\mathrm{NaOH}(0.26 \mathrm{~mL})$, and water $(0.78 \mathrm{~mL})$, and the resulting suspension was allowed to stir for an additional 2 h . To this mixture was added anhydrous MgSO_{4}, and the mixture was shaken and filtered through a sintered-glass frit. The solvents were removed in vacuo to give $479 \mathrm{mg}(79.3 \%)$ of product. An analytical sample was prepared by chromatography on silica gel with $10 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} as the eluant ($R_{f} 0.31$): IR (film) $3400,2940,1445,1370,1220,1150,1060,870 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.30(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.75(2 \mathrm{H}, \mathrm{m}), 2.9(1$ $\mathrm{H}, \mathrm{br}), 3.2(1 \mathrm{H}, \mathrm{br}), 3.8-4.0(4 \mathrm{H}, \mathrm{m})$; ${ }^{3} \mathrm{C}$ NMR (CDCl_{3}) $\delta 25.0$, 26.0 (minor), 59.6 (minor', 60.3, 65.6, 70.8, 78.3, 78.8 (minor), 109.0, 109.3 (minor).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{4}$: $\mathrm{C}, 54.53 ; \mathrm{H}, 9.15$. Found: $\mathrm{C}, 54.27$; H, 9.22.
(b) From Aldehyde 34. To a suspension of lithium aluminum hydride ($184 \mathrm{mg}, 4.84 \mathrm{mmol}$) in THF (10 mL) under nitrogen was added aldehyde 34 ($422 \mathrm{mg}, 2.42 \mathrm{mmol}$) in THF (5 mL). The mixture was stirred for $1 . \mathrm{h}$, quenched with water $(0.2 \mathrm{~mL}), 15 \%$ aqueous $\mathrm{NaOH}(0.2 \mathrm{~mL}$), and water (0.6 mL), and allowed to stir for an additional hour. To this was added anhydrous MgSO_{4}, the mixture was shaken and filtered through a sintered-glass frit, the filter cake was washed with ether, and the combined filtrates were concentrated in vacuo to give 312 mg of a mixture of 37 and 38 (73%): IR (film) $3400,2940,1445,1370,1220,1150,1060,870$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.75(2 \mathrm{H}$, $\mathrm{m}), 2.9(1 \mathrm{H}, \mathrm{br}), 3.2(1 \mathrm{H}, \mathrm{br}), 3.8-4.0(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 25.1,25.8$ (minor), 26.4, 34.3, 34.8 (minor), 59.8 (minor), 60.5, 65.6, 70.9, 78.31. 78.83 (minor), 109.07, 109.4 (minor).
($2 R, 3 S, 4 S$)-1,2-O-Isopropylidine-4-methylpentane-1,2,3,5-tetraol (41) and ($2 R, 3 R, 4 R$)-1,2-O-Isopropylidine-4-methylpentane-1,2,3,5-tetraol (42). The $2: 1$ mixture of adducts 32b and $\mathbf{3 3 b}$ ($397 \mathrm{mg}, 0.987 \mathrm{mmol}$) purified chromatographically as previously described (vide supra) was dissolved in 3 mL of THF and the solution slowly added to a solution of $\mathrm{LiAlH}_{4}(49 \mathrm{mg}, 1.29$ mmol) in 5 mL of THF. The solution was heated at reflux for 14 h , cooled, and quenched by the addition of 0.40 mL of $\mathrm{H}_{2} \mathrm{O}$, 0.40 mL of $15 \% \mathrm{NaOH}$, and 1.20 mL of $\mathrm{H}_{2} \mathrm{O}$. The resulting solution was dried (MgSO_{4}), filtered, and evaporated to give a 2:1 mixture of diols 41 and 42. This material was chromatographed on silica gel with ether as eluant to give three fractions. Fraction $1(59 \mathrm{mg}, 32 \%, R ; 0.33)$ was pure $41:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.95$
($3 \mathrm{H}, \mathrm{d}, J=7$), $1.35(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.70(1 \mathrm{H}, \mathrm{m}), 3.0-4.0$ $(7 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 76.8,75.6,66.5,65.1,36.8,26.4,25.2$, 13.5.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{4}$: C, $56.82 ; \mathrm{H}, 9.54$. Found: $\mathrm{C}, 57.19$; H, 9.44.
Fraction $2(50 \mathrm{mg}, 27 \%)$ was a mixture. Fraction $3(25 \mathrm{mg}$, $13 \%, R_{f} 0.24$) was pure minor product 42: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) δ $0.97(3 \mathrm{H}, \mathrm{d}, J=7), 1.40(3 \mathrm{H}, \mathrm{s}), 1.47(3 \mathrm{H}, \mathrm{s}), 1.80(1 \mathrm{H}, \mathrm{m}), 3.3-4.3$ $(8 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 75.5,66.9,66.4,65.9,38.5,26.4,25.2$, 14.2.
($2 R, 3 S$)-1,2-O-Isopropylidine-4-methylpentane-1,2,3,5tetraols 39 and 40 . To a stirred solution of $0.20 \mathrm{~g}(5.3 \mathrm{mmol})$ of lithium aluminum hydride in 10 mL of ether was added 1.7 $\mathrm{g}(5.3 \mathrm{mmol})$ of a solution of aldols $30 \mathrm{e}(78 \%)$ and $31 \mathrm{e}(18 \%)$ in 4 mL of ether. After 2 h at room temperature, the reaction was quenched with, successively, 0.2 mL of $\mathrm{H}_{2} \mathrm{O}, 0.2 \mathrm{~mL}$ of 15% NaOH , and 0.6 mL of $\mathrm{H}_{2} \mathrm{O}$. The resultant slurry was stirred 2 h and filtered. The salts were washed two times with ether, and the filtrate was evaporated to give 1.36 g of a nearly colorless thick oil. The product was a mixture of triols and trimethylsiloxy diols as indicated by TLC [R_{f} (ether) 0.57 and 0.22]. The crude mixture was dissolved in 10 mL of methanol to which 100 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$ had been added. After 2 h at room temperature, the reaction product showed a single spot on TLC at $R_{f} 0.22$ (ether). The methanol was evaporated, and the residue was taken up in ether and filtered. Evaporation of the ether gave 1.23 g of ($2 R$)-4,6-dimethyl-1,2-O-isopropylideneheptane-1,2,3,5,6-pentaol as a colorless very thick oil which was used in the following reaction without further purification.

To a stirred $0^{\circ} \mathrm{C}$ solution of $3.2 \mathrm{~g}(15 \mathrm{mmol})$ of NaIO_{4} in 75 mL of $\mathrm{H}_{2} \mathrm{O}$ was added a $0^{\circ} \mathrm{C}$ solution of $1.23 \mathrm{~g}(5.0 \mathrm{mmol})$ of the triol in 30 mL of ethanol. After being stirred 15 min at $0^{\circ} \mathrm{C}$, the reaction mixture was diluted with 100 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted five times with 65 mL of CHCl_{3}. The CHCl_{3} layers were combined, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to give $0.77 \mathrm{~g}(4.1 \mathrm{mmol})$ of ($2 R, 4 R$)-4,5-O-isopropylidine-3,4,5-trihydroxy-2-methylpentanal as a colorless oil which showed a single spot by TLC (ether); R_{f} 0.65 .

The crude aldehyde ($0.77 \mathrm{~g}, 4.1 \mathrm{mmol}$) in 4 mL of ether was added to a stirred solution of $0.16 \mathrm{~g}(4.1 \mathrm{mmol})$ of lithium aluminum hydride in 15 mL of ether. After being stirred for 50 min at room temperature, the reaction mixture was quenched by addition of, successively, 0.16 mL of $\mathrm{H}_{2} \mathrm{O}, 0.16 \mathrm{~mL}$ of $15 \% \mathrm{NaOH}$ and 0.48 mL of $\mathrm{H}_{2} \mathrm{O}$. The resultant slurry was stirred 45 min and filtered. The salts were washed two times with ether, and the filtrate was evaporated to give $0.69 \mathrm{~g}(3.6 \mathrm{mmol})$ of $39(78 \%)$ and $40(18 \%)$ as a colorless liquid. A 69% yield of tetraol was obtained, based on the aldols 30e and 31e: IR (thin film) $3400,1380,1370$, $1260,1220,1160,1060,1040,990,860 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.96(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=8$), $1.34(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.85(1 \mathrm{H}, \mathrm{m}), 3.3-4.1$ $(6 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 10.2,10.4$ (minor), 25.1, 26.5, 36.7, 37.9 (minor), 65.3 (minor), $66.2,66.8,72.8$ (minor), 73.7, 76.3, 77.2 (minor), 108.9, 109.4 (minor).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{4}: \mathrm{C}, 56.82 ; \mathrm{H}, 9.54$. Found: C, 56.56 ; H, 9.62.
($2 R, 3 S$)-1,2-O-Isopropylidene-4-methylpentane-1,2,3,5tetraols 39 and 41 . To a stirred solution of $0.085 \mathrm{~g}(2.2 \mathrm{mmol})$ of lithium aluminum hydride in 8 mL of ether was added a solution of $0.43 \mathrm{~g}(2.0 \mathrm{mmol})$ of aldols $\mathbf{3 0 a}(60 \%)$ and $32 \mathrm{a}(40 \%)$ in 2 mL of ether. After the mixture was stirred for 23 h at room temperature, the reaction was quenched with, successively, $85 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}, 85 \mu \mathrm{~L}$ of $15 \% \mathrm{NaOH}$, and $255 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$. The resultant slurry was stirred 2 h and filtered. The salts were washed two times with ether, and the filtrate was evaporated to give 0.32 g (85%) of diols $39(60 \%)$ and 41 (40%) as a colorless oil. An analytical sample was prepared by chromatography on silica gel, eluted with ether: IR (thin film) $3400,1380,1370,1260,1220$, $1160,1060,860,850 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.89(3 \mathrm{H}, \mathrm{d}, J=$ 7), $0.94(3 \mathrm{H}, \mathrm{d}, J=7), 1.32(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.8(1 \mathrm{H}, \mathrm{m})$, 3.4-4.2 (complex m); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 10.2,13.4$ (minor), 25.1, 26.3 (minor), 26.5, 36.7, 65.2 (minor), 66.4, 66.8, 73.9, 75.5 (minor), 76.3, 76.7 (minor), 109.1.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{4}: \mathrm{C}, 56.82 ; \mathrm{H}, 9.54$. Found: C, 56.69 ; H, 9.64.
(3S,4R)-3-Hydroxy-4-(hydroxymethyl)-2-methyldihydro$1(2 H)$-furanones 43 and 44. The aldols $30 e(60 \%$) and $31 e$

Figure 1. Perspective view of the molecular structure of aldol 48. For clarity, hydrogens are shown only on C-5 and C-6.
(40%) ($1.02 \mathrm{~g}, 4.7 \mathrm{mmol}$) were dissolved in 20 mL of 60% aqueous acetic acid, and the mixture was stirred at room temperature overnight. The solvents were removed (bath temperature 40-70 ${ }^{\circ} \mathrm{C}$) in vacuo to give 0.6 of $43(60 \%)$ and $44(40 \%)$ as a yellow oil. The product was purified by chromatography on silica gel, eluted with ethyl acetate to give $0.2 \mathrm{~g}(30 \%)$ of pure 43 and 44 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($180 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.04(3 \mathrm{H}, \mathrm{d}, J$ $=7.1$, minor), 1.14 ($3 \mathrm{H}, \mathrm{d}, J=7.36$), $2.56(1 \mathrm{H}, \mathrm{dq}, J=7.36,8.85$), $2.80(1 \mathrm{H}, \mathrm{dq}, J=5.94,7.10$, minor), 3.4-4.3 (series of complex multiplets); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 8.3$ (minor), 12.5, 39.1 (minor), $43.2,60.0,60.9$ (minor), 70.1 (minor), 73.1, 84.6, 86.9 (minor), 177.1, 179.2 (minor).
(3S,4R)-3-Acetoxy-4-(acetoxymethyl)-2-methyldihydro$1(2 H)$-furanone. To a solution of $0.20 \mathrm{~g}(1.4 \mathrm{mmol})$ of diol lactones $43(60 \%)$ and $44(40 \%)$ in 10 mL of pyridine was added 2.0 mL of acetic anhydride, and the mixture was warmed to 40 ${ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted two times with ether. The ether layers was combined, washed one time with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give $0.23 \mathrm{~g}(71 \%)$ of the diacetate. The product was purifed by chromatography on silica gel, eluted with 50% ether in hexanes to yield $0.20 \mathrm{~g}(62 \%)$ of the pure diacetate ($60: 40$) as a colorless oil: IR (thin film) 1780 (br), 1760 (br), 1380,1230 (br), 1180, 1060 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.24(3 \mathrm{H}, \mathrm{d}, J=8), 1.36(3 \mathrm{H}, \mathrm{d}, J=$ 7), 2.06 ($3 \mathrm{H}, \mathrm{s}$), $2.10(3 \mathrm{H}, \mathrm{s}), 2.8(1 \mathrm{H}, \mathrm{m}), 4.2-4.6(\mathrm{~m}), 4.98$ (1 $\mathrm{H}, \mathrm{dd}, J=4.8,5.7$), $5.32(1 \mathrm{H}, \mathrm{dd}, J=6.9,1.2)$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 8.5$ (minor), 13.6, 20.4, 37.4 (minor), 41.3, 62.9 (minor), 63.0, 72.6 (minor), 76.1, 79.5, 80.4 (minor), 170.0, 170.1 (minor).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{6}: \mathrm{C}, 52.17 ; \mathrm{H}, 6.13$. Found: C, 51.95; H, 6.17.

6,7-O-Isopropylidine-5,6,7-trihydroxy-2,4,6-trimethyl-2-[(trimethylsilyl)oxy]-3-nonanones 45 and 46 . To 1.75 mL of a 0.633 M solution of LDA at $-70^{\circ} \mathrm{C}$ was added over 5 min 0.221 mL (1 mmol) of ketone 9. After 30 min , aldehyde $5(177 \mu \mathrm{~L}, 1.0$ mmol) was added over a 3 -min period. After an additional 15 $\min , 1 \mathrm{~mL}$ of saturated NaHCO_{3} was added. The mixture was diluted with brine and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}. Filtration and solvent removal gave 302 mg of an oil containing a 3:1 mixture of diastereomers (assayed by ${ }^{13} \mathrm{C}$ NMR). Preparative TLC (SiO_{2}, eluant $30 \% \mathrm{Et}_{2} \mathrm{O}$ /hexane) gave 45 ($R_{f} 0.38$). Crystallization from hexane gave pure 45: mp 79-80 ${ }^{\circ} \mathrm{C}$; $\operatorname{IR}\left(1 \%\right.$ in $\left.\mathrm{CHCl}_{3}\right) 3520,1690,1435$, $1360,1250,1200,1140 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.7-4.0(2 \mathrm{H}, \mathrm{m})$, $3.65(1 \mathrm{H}, \mathrm{dd}, J=8,4.5), 2.90(1 \mathrm{H}, \mathrm{d}, J=3), 1.6-1.9(2 \mathrm{H}, \mathrm{m})$, $1.36(3 \mathrm{H}, \mathrm{s}), 1.33(6 \mathrm{H}, \mathrm{s}), 1.32(3 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}$, $\mathrm{d}, J=7$), $1.03(3 \mathrm{H}, \mathrm{t}, J=7), 0.2(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $221.5,106.9,87.9,82.7,80.5,70.9,39.3,28.4,28.1,27.9,26.5,22.0$, 12.0, 11.7, 2.3.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 60.01 ; \mathrm{H}, 9.99$. Found: C, 59.89; H, 9.88.

Pure diastereomer 46 ($R_{f} 0.44$) was not obtained.
7,8-O-Isopropylidine-6,7,8-trihydroxy-2,2,5,7-tetra-methyl-3-[(trimethylsilyl)oxy]-4-decanone (48). To 52 mL of a 0.4 M solution of LDA in THF was added at $-70^{\circ} \mathrm{C}$ over a $5-\mathrm{min}$ period $4.38 \mathrm{~mL}(3.83 \mathrm{~g}, 17.7 \mathrm{mmol})$ of 2,2 -dimethyl- $3-$ [(trimethylsilyl)oxy]-4-hexanone. After the mixture was stirred
for $2 \mathrm{~h}, 3.13 \mathrm{~mL}$ (17.7 mmol) of the aldehyde 5 was added. After $25 \mathrm{~min}, 20 \mathrm{~mL}$ of saturated NaHCO_{3} was added. The mixture was diluted with brine and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The ether phase was washed with 220 mL of $10 \% \mathrm{HCl}$ and then dried over MgSO_{4}. Solvent removal in vacuo gave an oil (6.1 g) from which $2.1 \mathrm{~g}(31 \%)$ of a single aldol crystallized. The remaining oil, which consisted mostly of uncondensed starting material, was subjected to column chromotography (120 g of silica gel, $10 \% \mathrm{Et}_{2} \mathrm{O}$-hexane) to give 1.212 g of a forerun fraction (R_{f} 0.46), the product ($0.9 \mathrm{~g}, 13 \%, R_{f} 0.17$), and a third component ($0.3 \mathrm{~g}, R_{f} 0.12$) which was a mixture of aldehyde 5 and product 48: mp 81.5-82.5 (hexane). The total yield of purified 48 was 44% : IR (1% in CDCl_{3}) $3500,1700,1685,1455,1370,1250,1100,840$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.80(1 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}$, $\mathrm{m}), 2.95(1 \mathrm{H}, \mathrm{d}, J=2), 1.65(2 \mathrm{H}, \mathrm{m}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}$, s), $1.30(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{d}, J=7), 1.00(3 \mathrm{H}, \mathrm{t}, J=7), 0.95$ (9 $\mathrm{H}, \mathrm{s}), 0.15(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 219.5,107.0,88.4,85.3$, 82.7. 69.1, 42.2, 36.0, 28.5, 26.8, 26.4, 21.9, 21.1, 11.7, 11.0, 0.38.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 61.79 ; \mathrm{H}, 10.38$. Found: C, 62.10; H, 10.17.

Desilylation of Aldol 48 . To $257 \mathrm{mg}(0.662 \mathrm{mmol})$ of silyloxy ketone 48 was added 4 mL of MeOH and $150 \mathrm{mg}(1.6 \mathrm{mmol})$ of $\mathrm{KF} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The mixture was stirred overnight at room temperature, and the methanol was then removed in vacuo. The residue was taken up in ether and filtered. After solvent removal the filtrate gave 205 mg (98%) of product. Recrystallization from hexane gave white needles: mp $122.5-123{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(1 \%\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ $3480,1690,1650,1450,1370,1090,1000 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 4.00(1 \mathrm{H}, \mathrm{s}), 3.67(1 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{m}), 3.2(1 \mathrm{H}, q u i n t e t, J$ $=6), 2.15(1 \mathrm{H}, \mathrm{d}, J=13), 1.70(1 \mathrm{H}, \mathrm{m}), 1.70(2 \mathrm{H}, \mathrm{m}), 1.30(6$ $\mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{d}, J=7), 1.05(3 \mathrm{H}, \mathrm{t}, J=7), 1.00$ ($9 \mathrm{H}, \mathrm{s}$).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{5}: \mathrm{C}, 64.5 ; \mathrm{H}, 10.2$. Found: $\mathrm{C}, 64.22$; H, 9.95.
7,8-O-Isopropylidine-2,2,5,7-tetramethyldecane-3,4,6,7,8pentaols 50 and 51. Method a. To $51 \mathrm{mg}\left(1.35 \mathrm{mmol}^{2}\right)$ of LiAlH_{4} in 4 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ at $-70^{\circ} \mathrm{C}$ was added $261 \mathrm{mg}(0.673 \mathrm{mmol})$ of silyloxy ketone 48 in 1 mL of $\mathrm{Et}_{2} \mathrm{O}$. When the addition was complete, the bath was removed and the reaction allowed to warm to room temperature. After a total reaction time of $45 \mathrm{~min}, 50$ $\mu \mathrm{L}$ of $\mathrm{H}_{2} \mathrm{O}, 50 \mu \mathrm{~L}$ of $15 \% \mathrm{NaOH}$, and $150 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$ were sequentially added. After the mixture was stirred for $5 \mathrm{~min}, \mathrm{MgSO}_{4}$ was added, the mixture was filtered, and the residue was washed with several portions of CHCl_{3}. Solvent removal gave an oil which was stirred overnight with 3 mL off MeOH and $130 \mathrm{mg}(1.4 \mathrm{mmol})$ of $\mathrm{KF} \cdot \mathrm{H}_{2} \mathrm{O}$. Solvent removal in vacuo gave an oil which was taken up in ether, filtered, and reduced in vacuo to give a $3: 1$ mixture of triols ($206 \mathrm{mg}, 96 \%$), the major isomer 50 being the less polar ($R_{f} 0.21,0.13 ; 20 \%$ ethyl acetate-hexane). At length, the major isomer was induced to crystallize from $\mathrm{CHCl}_{3}: \mathrm{mp} 116.5-117.5$ ${ }^{\circ} \mathrm{C}$; IR (1% in CHCl_{3}) $3500,1450,1375,1365,1180,1100 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta 4.15(1 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}, \mathrm{m}), 3.55(3 \mathrm{H}$, $\mathrm{m}), 3.20(2 \mathrm{H}, \mathrm{m}), 2.70(1 \mathrm{H}, \mathrm{m}), 1.65(2 \mathrm{H}, \mathrm{m}), 1.30(3 \mathrm{H}, \mathrm{s}), 1.25$ $(6 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{d}, J=7), 1.00(3 \mathrm{H}, \mathrm{t}, J=7), 0.90(9 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}) $\delta 105.3,87.2,75.7,71.2,67.9,37.0,26.9$, 25.3, 25.2, 24.6, 20.8, 19.4, 11.1, 10.3 .

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{5}$: C, 64.1; $\mathrm{H}, 10.77$. Found: C, 64.09; H, 10.9.

Method b. To 110 mg (2.9 mmol) of LiAlH_{4} in 6 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ at room temperature was added $304 \mathrm{mg}(0.962 \mathrm{mmol})$ of dihydroxy ketone 14 in 1 mL of $\mathrm{Et}_{2} \mathrm{O}$. After the mixture was stirred for $0.5 \mathrm{~h}, 0.11 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}, 0.11 \mathrm{~mL}$ of $15 \% \mathrm{NaOH}$, and 0.35 mL of $\mathrm{H}_{2} \mathrm{O}$ were sequentially added to the mixture. The mixture was stirred $10 \mathrm{~min}, \mathrm{MgSO}_{4}$ was added, and the mixture was filtered and then reduced in vacuo to yield $304 \mathrm{mg}(99 \%)$ of the more polar isomer $51\left(R_{f} 0.13\right)$. The less polar isomer was not detected by ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}) $\delta 87.1,77.6,75.0,34.0,27.3$, 26.1, 25.5, 24.8, 21.0, 18.8.
(2SR,3SR,4SR,5SR)-4,5-O-Isopropylidine-3,4,5-tri-hydroxy-2-methylheptanal (49). Method A. To a solution of triol $50(0.775 \mathrm{~g}, 2.44 \mathrm{mmol})$ in 18 mL of ethanol at $0^{\circ} \mathrm{C}$ was added $36.6 \mathrm{~mL}(7.32 \mathrm{mmol})$ of a precooled 0.2 M solution of NaIO_{4} in $\mathrm{H}_{2} \mathrm{O}$. After 1 h of rapid stirring at $0^{\circ} \mathrm{C}$ a copious white precipitate had appeared. One volume of $\mathrm{H}_{2} \mathrm{O}$ was added to the mixture The aqueous phase was extracted with $\mathrm{CHCl}_{3}(6 \times 30 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}. Filtration
followed by solvent removal in vacuo gave $417 \mathrm{mg}(84 \%)$ of aldehyde 49：IR（thin film） $3460,1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ CDCl_{3} ） $\delta 9.5(1 \mathrm{H}, \mathrm{d}, J=2), 4.03(1 \mathrm{H}, \mathrm{t}, J=5), 3.6(1 \mathrm{H}, \mathrm{dd}, J=9,5)$ ， $2.8(1 \mathrm{H}, \mathrm{m}), 1.75(3 \mathrm{H}, \mathrm{m}), 1.34(6 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}$ ， $\mathrm{d}, J=7$ ）， $1.03(3 \mathrm{H}, \mathrm{t}, J=7) ;{ }^{13} \mathrm{C}$ NMR（ $\left.\mathrm{CDCl}_{3}\right) \delta 203.0,107.2$ ， $86.8(\mathrm{~m}), 92.4,70.5,48.6,28.2,26.2,22.1,19.5,11.9,10.1$ ；mass spectrum m / e（relative intensity） 215 （0．56）， 197 （0．12）， 157 （1．66）， 143 （6．75）．

Method B．To a solution of $\mathrm{LiAlH}_{4}(18 \mathrm{mg}, 0.47 \mathrm{mmol})$ in 5 mL of ether was added aldol 45 （ $56 \mathrm{mg}, 0.156 \mathrm{mmol}$ ）in 1 mL of ether．After the mixture was stirred for 1 h at room temperature， 0.2 mL of $\mathrm{H}_{2} \mathrm{O}, 0.2 \mathrm{~mL}$ of $15 \% \mathrm{NaOH}$ ，and 0.6 mL of $\mathrm{H}_{2} \mathrm{O}$ were added sequentially to the mixture．After the precipitate turned white，the solution was filtered off and the residue washed several times with CHCl_{3} ．The filtrate was concentrated to an oil，and 5 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and a catalytic quantity of $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added． The mixture was refluxed for 0.5 h and cooled，and the solvent was removed in vacuo，giving $44 \mathrm{mg}(98 \%)$ of desilylated triol． This triol was treated with NaIO_{4} as in part A to give an aldehyde identical with that obtained by cleavage of triol 50 by ${ }^{1} \mathrm{H}$ NMR， ${ }^{13} \mathrm{C}$ NMR，and TLC．

Crystal Structure of Aldol 48．Crystallographic Data Collection．Two crystals of aldol 48，both with approximate dimensions $0.7 \times 0.4 \times 0.4 \mathrm{~mm}$ were mounted on a glass fiber with epoxy cement such that the longest crystal dimension was ap－ proximately parallel to the fiber axis．The first crystal decomposed significantly after about half of the data set，and the remaining data were collected on the second crystal．

Unit cell parameters and the orientation matrix were deter－ mined on a Syntex $P 2_{1}$ four－circle diffractometer equipped with a graphite monochromator（Bragg 2θ angle 12.2° ）and using Mo $\mathrm{K} \alpha$ radiation at a takeoff angle of 6.75° ．Fifteen reflections whose 2θ values ranged from 8.86 to 18.12° were machine centered and used in least－squares refinement of the lattice parameters and orientation matrix．The unit cell parameters obtained were $a=$ $9.050(2) \AA{ }^{23} b=11.538$（3）$\AA, c=13.741$（3）$\AA, \alpha=109.95(2)^{\circ}$ ， $\beta=100.41(2)^{\circ}, \gamma=108.68(2)^{\circ}$ ，and $V=1207.9$（5）\AA^{3} ．The calculated density of $1.07 \mathrm{~g} \mathrm{~cm}^{-3}$ for 2 formula units per unit cell agrees with the experimental density of $1.08 \mathrm{~g} \mathrm{~cm}^{-3}$ measured by the flotation method using a mixture of ZnCl_{2} and $\mathrm{H}_{2} \mathrm{O}$ ．ω scans of several low 2θ angle reflections gave peak widths at half－height of less than 0.13° ，indicating a satisfactory mosaic spread for the crystal．

Axial photographs indicated that the crystal belonged to the triclinic system．Intensity data for zero and upper levels were collected at a rapid scan rate and the intensities examined carefully for systematic absences．No systematic absences were observed， which is consistent with space group P1 or P1（No． 1 or 2）．${ }^{24}$ Our initial choice of $P \overline{1}$ was confirmed by successful refinement in that space group．

Intensity data were collected by using $\theta-2 \theta$ scans with the X－ray source and monochromator settings identical with those used for determination of the unit cell parameters．A variable scan rate of from 3.91 to 29.3° per minute was used，and a scan width of 2.0° was sufficient to collect all of the peak intensity．Stationary background counts were measured at the beginning and at the end of each scan with a total background to scan time ratio of 1．0．A constant decrease was observed in the intensities of three standard reflections（ 030,005 ，and 200）monitored every 97 re－ flections，and a linear decomposition correction was applied．From a total of 4272 reflections collected in a complete hemisphere of data（our $2 \theta=50^{\circ}$ ）， 2721 were accepted as statistically above background on the basis that F was greater than $5 \sigma(F)$ ．Lorentz and polarization corrections were made in the usual way．

Solution and Refinement of the Structure．Computations were performed by using standard programs；${ }^{25}$ all computations were carried out on the CDC Cyber 74 system．For structure factor calculations the scattering factors were taken from Cromer and
（23）Numbers in parentheses here and in the supplementary material tables indicate estimated standard deviations in the least signficant $\operatorname{digit}(\mathbf{s})$ ．
（24）＂International Tables for X－ray Crystallography＂，Vol．I，Kynoch Press，Birmingham，England， 1952.

Waber＇s tabulation．${ }^{26}$ The scattering factor（s）for all atoms except hydrogen were corrected for the real and imaginary anomalous despersion components．${ }^{26}$ The agreement factors are defined in the usual way as shown in eq 1 and 2 ．In all least－squares

$$
\begin{gather*}
R=\left(\sum| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right) /\left(\sum\left|F_{\mathrm{o}}\right|\right)\right. \tag{1}\\
R_{\mathrm{w}}=\sum\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right) w^{1 / 2} / \sum\left(\left|F_{\mathrm{o}}\right|\right) w^{1 / 2} \tag{2}
\end{gather*}
$$

refinements，the quantity minimized was $\sum\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ ．A weighting scheme based on counting statistics，$w=2.7 /\left[\sigma(F)^{2}+\right.$ $0.0004 F^{2}$ ］，was employed for calculating R_{w} and in least－squares refinement．
The silicon position was determined from a sharpened Pat－ terson function．The coordinates of the oxygen，carbon，and hydroxy hydrogen atoms were located from difference Fourier maps．The positions of the remaining hydrogens were calculated by using the riding mode of the SHELX－76 program．A total of 247 parameters were varied，including a scale factor，the coordinates， the anisotropic thermal parameters for all nonhydrogen atoms， and the isotropic temperature factors for the hydrogens．However， only one overall temperature factor was varied when hydrogens occurred in chemically similar groups（i．e．，hydrogens in the tert－butyl group）．The full－matrix，least－squares refinement converged with $R=0.067$ and $R_{\mathrm{w}}=0.071$ ．The final positional and thermal parameters，a list of bond lengths，and a list of bond angles are available in Tables IV，V，VI，and VII in the supple－ mentary material．${ }^{27}$

Acknowledgment．This work was supported by a grant from the United States Public Health Service（AI－15027）． M．C．P．acknowledges the Fannie and John Hertz Foun－ dation for financial assistance in the form of a fellowship．

Registry No．（ \pm ）－1，74262－56－9；（ \pm ）－2，41954－96－5；（ \pm ）－3，74310－ 50－2；4，15186－48－8；DL－5，72523－81－0；6，75－97－8；7，564－04－5；8， $55816-60-9 ; 9,72507-50-7$ ；10，79－20－9；11，554－12－1；12，29311－34－0； 13，72959－50－3；（ \pm ）－14，74262－57－0；（ \pm ）－15，74262－58－1；（ \pm ）－16， 74262－59－2；（土）－17，74262－60－5；DL－erythro－18，74262－61－6；DL－threo－ 18，74262－62－7；DL－19，56709－62－7；DL－20，74310－51－3；DL－21a，74262－ 63－8；DL－21b，74262－64－9；DL－21c，74262－65－0；DL－22a，74262－66－1； DL－22b，74262－67－2；DL－22c，74262－68－3；DL－23a，74262－69－4；DL－23b， 74262－70－7；DL－23c，74262－71－8；DL－24a，74262－72－9；DL－24b，74262－ 73－0；DL－24c，74262－74－1；DL－25，74262－75－2；DL－26，74262－76－3；DL－ 28a，74262－77－4；DL－28b，74262－78－5；（ \pm ）－28c，74262－79－6；（ \pm ）－28d， 74262－80－9；DL－29a，74262－81－0；DL－29b，74262－82－1；（土）－29c，74262－ 83－2；（土）－29d，74262－83－2；DL－30a，74262－84－3；DL－30b，74262－85－4 DL－30c，74262－86－5；DL－30e，74262－87－6；DL－31b，74262－88－7；DL－31c， 74262－89－8；DL－31e，74262－90－1；DL－32a，74262－91－2；DL－32b， 74262 92－3；DL－32c，74262－93－4；DL－33b，74262－94－5；34，74310－52－4；DL－35， 18546－36－6；DL－36，40156－57－8；DL－37，74262－95－6；DL－38，74262－96－7； （ \pm ）－39，74262－97－8；DL－40，74310－53－5；DL－41，74310－54－6；（ \pm ）－42， 74310－55－7；DL－43，74262－98－9；DL－44，74262－99－0；DL－45，72507－48－3； DL－46，72523－88－7；（ \pm ）－48，72507－49－4；desilylated（ \pm ）－48，74263－00－6； DL－49，74263－01－7；（土）－50，74263－02－8；（土）－51，74310－56－8；3－ hydroxy－3－methylbutan－2－one，115－22－0；tert－butyldimethylsilyl chloride，18162－48－6；（ \pm ）－2－methyl－4－hydroxy－2－pentene，53177－37－0； benzyl bromide，100－39－0；propanal，123－38－6；2，6－di－tert－butyl－4－ methylphenol，128－37－0；propionyl chloride，79－03－8；（ R ）－glycer－ aldehyde acetonide，15186－48－8；2－methyl－3－hydroxy－4－（benzyloxy）－ pentanoic acid，74263－03－9；allyl bromide，106－95－6；4，6－dimethyl 1，2－O－isopropylideneheptane－1，2，3，5，6－pentaol，74282－43－2；4，5－O－ isopropylidene－3，4，5－trihydroxy－2－methylpentanal，74263－04－0；2，2－ dimethyl－3－［（trimethylsilyl）oxy］－4－hexanone，74263－05－1．

Supplementary Material Available：Structure with num－ bering scheme of aldol 48，tables of atomic coordinates and thermal parameters（Tables IV and V），and tables of bond lengths and bond angles（Tables VI and VII）（ 6 pages）．Ordering information is given on any current masthead page．
（25）The programs utilized were Sheldrick＇s SHELX－76，Johnson＇s OR－ tep，Main，Germain，and Woolfoon＇s Multan，and Zalkin＇s FORDAP．
（26）＂International Tables for X－ray Crystallography＂，Vol．IV，Ky－ noch Press，Birmingham，England，1974，pp 99－101，149－150．
（27）See the paragraph at the end of the paper regarding supplemen－ tary material．

[^0]: (1) For paper 8, see: C. H. Heathcock and M. C. Pirrung, J. Org. Chem., 45, 1727 (1980).
 (2) P. A. Bartlett, Tetrahedron, 36, 2 (1980).
 (3) (a) E. Baer and H. O. L. Fischer, J. Biol. Chem., 128, 463 (1939); (b) E. Baer, J. Am. Chem. Soc., 67, 338 (1975); (c) D. Horton, J. B. Hughes, and J. K. Thomson, J. Org. Chem., 33, 728 (1968).
 (4) J. Inananga, A. Takeda, N. Okukado, and M. Yamaquchi, Mem. Fac. Sci., Kyushi Univ., Ser. C, 9(2), 295 (1975).
 (5) M. Farines and J. Soulier, Bull. Soc. Chim. Fr., 332 (1970).
 (6) It has been convenient for us to have a stereostructural nomenclature which is invariant of the nature of R and R^{\prime} (eq 2). We prefer the prefixes erythro and threo and use them in the following sense: when the backbone of the aldol is written in an extended (zigzag) manner and the α-alkyl and β-hydroxy substituents both extend toward the viewer or away from the viewer, this is the erythro diastereomer.

[^1]: (7) L. D. Bergel'son, E. V. Dyatlovitskaya, M. Tichy, and V. V. Voronkova, Izv. Akad. Nauk SSSR, Ser. Khim., 9, 1612 (1962).
 (8) (a) S. Masamune C. U. Kim, K. E. Wilson, G. O. Spessard, P. E. Georghiou, and G. S. Bates, J. Am. Chem. Soc., 97, 3512 (1975); (b) P. A. Grieco, Y. Ohfune, Y. Yokoyama, and W. Owens, ibid., 101, 4749 (1979); (c) J. Inanaga, T. Katsuki, S. Takimoto, S. Ouchida, A. Nakano, M. Aiga, N. Okukado, and M. Yamaguchi, Proceedings of the 21st Symposium on the Chemistry of Natural Products, Sapporo, Japan, 1978, 324. (9) C. H. Heathcock, C. T. Buse, W. A. Kleschick, M. C. Pirrung, J. E. Sohn, and J. Lampe, J. Org. Chem., 45, 1066 (1980)

[^2]: (10) M. Kinoshita, S. Aburaki, M. Wada, and S. Umezawa, Bull. Chem. Soc. Jpn., 46, 1279 (1973).

[^3]: (11) M. Christl, H. J. Reich, and J. D. Roberts, J. Am. Chem. Soc., 93, 3463 (1971).
 (12) E. Breitmaier, G. Jung, and W. Voelter, Chimia, 26, 136 (1972).

[^4]: (13) J. J. K. Novâk, Collect. Czech. Chem. Commun., 39, 869 (1974).
 (14) C. H. Heathcock, M. C. Pirrung, and J. E. Sohn, J. Org. Chem., 44, 4294 (1979).

[^5]: (15) C. H. Heathcock, M. C. Pirrung, C. T. Buse, J. P. Hagen, S. D. Young, and J. E. Sohn, J. Am. Chem. Soc., 101, 7077 (1979). The preparation and further chemistry of 47 will be discussed in another paper. We introduce this one reaction at this time because it bears on the α-alkoxy aldehyde stereoselection question.

[^6]: (16) G. Dryhurst, "Periodate Oxidation of Diol and Other Functional Groups", Pergamon Press, Oxford, 1970, p 35.
 (17) (a) D. J. Cram and K. R. Kopecky, J. Am. Chem. Soc., 81, 2737 (1959). (b) See also J. D. Morrison and H. S. Mosher, "Asymmetric Organic Reactions", Prentice-Hall, Englewood Cliffs, NJ, 1971, pp 87-108.
 (18) M. Chērest, H. Felkin, and N. Prudent, Tetrahedron Lett., 2201 (1968).
 (19) N. T. Anh and O. Eisenstein, Nouv. J. Chim., 1, 61 (1977).
 (20) W. C. Still and J. H. McDonald, III, Tetrahedron Lett., 1031 (1980).

